

When are exact categories co-exact?

*Department of Mathematical Sciences,
Stellenbosch University*

CMUC 2025

- The category **CHaus**_{*} of pointed compact Hausdorff topological spaces is co-semi-abelian:
Theorem 1.3 of [Frances Borceux and Maria Manuel Clementino](#). “On toposes, algebraic theories, semi-abelian categories and compact Hausdorff spaces”. In: *Theory and Applications of Categories* 43.11 (2025), pp. 363–381
- In discussions around the above result Graham Manuell suggested the question of whether the above fact could be a consequence of **CHaus** being a pretopos.

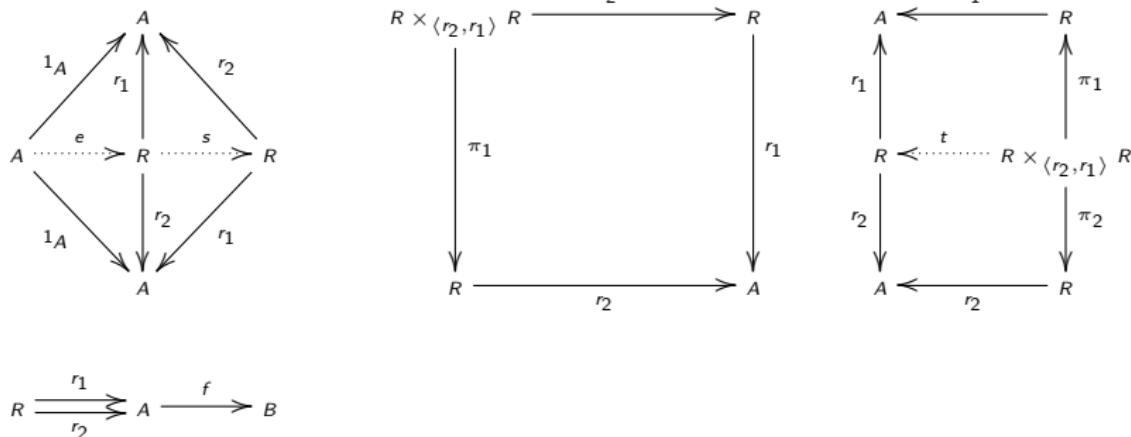
Definition

A category is a regular [Bar71] if it is finitely complete (admits all finite limits), regular epimorphisms are stable under pullback, and coequalizers of kernel pairs exist in it.

$$\begin{array}{ccc} E & \xrightarrow{p} & B \\ u \downarrow & & \downarrow v \\ E' & \xrightarrow{p'} & B' \end{array} \quad \begin{array}{ccccc} K & \xrightarrow[k_2]{k_1} & A & \xrightarrow{f} & B \\ & \searrow e & \downarrow & \nearrow m & \\ & & S & & \end{array}$$

Definition

A category is a Barr-exact [Bar71] if it is regular and (the projections) of each (internal) equivalence relations form the kernel pair of some morphism.



Definition

A category \mathbb{C} is a protomodular [Bou91] if each change functor of the fibration of points reflects isomorphisms.

$$\begin{array}{ccccc}
 E & \xrightarrow{p} & B & & \mathbf{Pt}_{\mathbb{C}}(B) \xrightarrow{p^*} \mathbf{Pt}_{\mathbb{C}}(E) \\
 & & & & \pi'_1 \\
 & & A' & \xleftarrow{\pi'_1} & A' \times_B E \\
 & f \nearrow & \uparrow \pi_1 & & \nearrow f \times_B 1_E \\
 A & \xleftarrow{\beta'} & A \times_B E & \xrightarrow{\langle \beta' p, 1_E \rangle} & E \\
 & \uparrow \alpha & \uparrow \pi_2 & \uparrow \pi'_2 & \downarrow p \\
 & \beta & & & E \\
 & \uparrow & & & \uparrow \\
 & B & \xleftarrow{\langle \beta p, 1_E \rangle} & \xleftarrow{\pi_2} & E \\
 & \uparrow & & & \uparrow \\
 & B & \xleftarrow{p} & E &
 \end{array}$$

If \mathbb{C} has an initial object, then \mathbb{C} is protomodular if and only if the change of base along morphisms of the form $!_B : 0 \rightarrow B$ reflect isomorphisms.

$$\begin{array}{ccccc}
 0 & \xrightarrow{!_E} & E & \xrightarrow{p} & B \\
 & \curvearrowright & & & \\
 & & !_B & &
 \end{array}
 \quad
 \begin{array}{ccccc}
 \mathbf{Pt}_{\mathbb{C}}(B) & \xrightarrow{p^*} & \mathbf{Pt}_{\mathbb{C}}(E) & \xrightarrow{!_E^*} & \mathbf{Pt}_{\mathbb{C}}(0) \\
 & \curvearrowright & & \cong & \\
 & & !_B^* & &
 \end{array}$$

Definition

A category \mathbb{C} is semi-abelian if it is pointed, exact, protomodular, and has binary coproducts.

Examples include:

- The category of groups;
- Every sub-variety of non-associative algebras over a ring (including associative, Lie and Leibniz);
- Abelian categories;
- Cocommutative Hopf algebras [GSV19];
- $\mathbf{CHaus}_*^{\text{op}}$ [BC25];
- \mathbb{C}_*^{op} where \mathbb{C}_* is the category of pointed objects in a topos;
- $\mathbf{Pt}_{\mathbb{C}}(B)$ where \mathbb{C} is semi-abelian;
- \mathbb{C}^X where \mathbb{C} is semi-abelian.

Definition

A category \mathbb{C} is ideally exact [Jan24] if it is exact, protomodular, admits finite coproducts and the unique morphism from $0 \rightarrow 1$ is a regular epimorphism.

Examples include:

- semi-abelian categories;
- unital algebras over a ring;
- $(B \downarrow \mathbb{C})$ where \mathbb{C} is ideally exact;

Note that if \mathbb{C} is ideally exact then for each B in \mathbb{C} the category $\mathbf{Pt}_{\mathbb{C}}(B)$ is semi-abelian.

Definition

A category is extensive if it has finite coproducts and each functor

$$\begin{array}{ccc} (\mathbb{C} \downarrow A) \times (\mathbb{C} \downarrow B) & \longrightarrow & (\mathbb{C} \downarrow A + B) \\ ((X, f), (Y, g)) \longmapsto (X + Y, f + g) \\ \downarrow (u, v) \qquad \qquad \qquad \qquad \qquad \downarrow u + v \\ ((X', f'), (Y', g')) \longmapsto (X' + Y', f + g') \end{array} \quad (\#)$$

is an equivalence of categories. This is equivalent to requiring that it has finite coproducts, pullbacks of coproduct inclusions along arbitrary morphisms exist, and for each diagram

$$\begin{array}{ccccc} A & \xrightarrow{i} & C & \xleftarrow{j} & B \\ \downarrow f & (3) & \downarrow h & (4) & \downarrow g \\ A' & \xrightarrow{i'} & C & \xleftarrow{j'} & B' \end{array} \quad \begin{array}{c} (1) \\ (2) \end{array}$$

in which (2) is a coproduct (diagram), (1) is a coproduct if and only if (3) and (4) are pullbacks.

Definition

A category is a pretopos if it is Barr-exact and extensive.

Examples include:

- Toposes;
- **CHaus**;
- The category \mathbf{Set}_κ of sets of cardinality bounded by κ ;
- $(\mathbb{C} \downarrow B)$ where \mathbb{C} is a pretopos;
- \mathbb{C}^X where \mathbb{C} is a pretopos.

Proposition

If \mathbb{C} be a pretopos, then

- pushouts of monomorphisms along arbitrary morphisms exist and form pullbacks in \mathbb{C} ;
- monomorphisms are stable under pushout in \mathbb{C} i.e. “ \mathbb{C} is coregular minus the existence of all finite colimits;”
- co-reflexive-relations are effective co-equivalence-relations in \mathbb{C} ;
- \mathbb{C} is co-exact as soon as \mathbb{C} admits pushouts of (regular) epimorphisms along (regular) epimorphisms;
- \mathbb{C} is co-protomodular;
- \mathbb{C} is co-ideally-exact (provided the above mentioned pushouts exist).

Definition

A category \mathbb{C} is additive if admits finite products and is enriched in abelian groups, which amounts to requiring that its hom-sets are equipped with an abelian group structures which are bilinear with respect to composition.

$$A \xrightarrow{f} B \xrightarrow[\substack{h \\ g}]{\quad} C \xrightarrow{i} D \qquad i(g + h)f = igf + ihf$$

Definition

A category is abelian if it is additive and exact.

Recall:

Proposition

If \mathbb{C} is an abelian category, then \mathbb{C}^{op} is an abelian category (and in particular \mathbb{C} is co-exact).

Condition 1

- finite coproducts exist in \mathbb{C} ;
- binary coproducts of pullback squares are pullback squares in \mathbb{C} ;
- For each monomorphism $m : S \rightarrow A$ in \mathbb{C} the diagram

$$\begin{array}{ccc} S + S & \xrightarrow{m+1_S} & A + S \\ [1_S, 1_S] \downarrow & & \downarrow [1_A, m] \\ S & \xrightarrow{m} & A \end{array}$$

is a pullback;

- for each regular epimorphism $p : E \rightarrow B$ in \mathbb{C} the diagram

$$\begin{array}{ccc} E + E & \xrightarrow{p+p} & B + B \\ [1_E, 1_E] \downarrow & & \downarrow [1_B, 1_B] \\ E & \xrightarrow{p} & B \end{array}$$

is a feeble pullback (i.e. the unique morphism into the pullback is a regular epimorphism).

Proposition

If \mathbb{C} is an exact category satisfying Condition 1, then

- 1 pushouts of monomorphisms exist in \mathbb{C} and are pullbacks;
- 2 monomorphisms are stable under pushout in \mathbb{C} ;
- 3 monomorphisms and regular monomorphisms coincide in \mathbb{C} and \mathbb{C} is balanced;
- 4 co-reflexive-relations in \mathbb{C} are effective co-equivalence relations;
- 5 \mathbb{C} is co-exact as soon as it admits pushouts of (regular) epimorphisms along (regular) epimorphisms;
- 6 \mathbb{C} is co-protomodular.

- finite coproducts exist in \mathbb{C} ;

Additive

Lextensive

binary products are coproducts

by assumption

- binary coproducts of pullback squares are pullback squares in \mathbb{C} ;

Additive

Lextensive

products of pullbacks
are pullbacks

equivalences of categories
preserve limits

c) For each monomorphism $m : S \rightarrow A$ in \mathbb{C} the diagram

$$\begin{array}{ccc} S + S & \xrightarrow{m+1_S} & A + S \\ [1_S, 1_S] \downarrow & & \downarrow [1_A, m] \\ S & \xrightarrow{m} & A \end{array}$$

is a pullback;

Additive

$$\begin{array}{ccc} W & \xrightarrow{\langle v_1, v_2 \rangle} & S + S \\ & \searrow \langle u - v_2, v_2 \rangle & \downarrow m+1_S \\ & & A + S \\ & \swarrow u & \downarrow [1_S, 1_S] \\ & & S \xrightarrow{m} A \end{array}$$

$$(v_1 + mv_2 = mu) \Rightarrow (v_1 = m(u - v_2))$$

Lextensive

$$\begin{array}{ccc} C & \xrightarrow{\quad 1_C \quad} & P \\ i_j \nearrow & \xrightarrow{\quad p \quad} & \downarrow g \\ D & \xrightarrow{\quad i_j \quad} & D + D \xrightarrow{\quad [1_D, 1_D] \quad} D \\ & \downarrow q & \downarrow g \\ C & \xrightarrow{\quad i_1 \quad} & P \\ & \searrow p & \downarrow g \\ & & C \end{array} \quad \begin{array}{ccc} D & \xrightarrow{\quad \iota_1 \quad} & D + D \\ \uparrow g & & \uparrow q \\ C & \xrightarrow{\quad i_2 \quad} & D \\ \uparrow g & & \uparrow g \\ 1_C & \xrightarrow{\quad \iota_2 \quad} & C \end{array}$$

$$\begin{array}{ccc} S + S & \xrightarrow{m+1_S} & A + S \\ \downarrow 1_S + 1_S & \xrightarrow{\quad m+m \quad} & \downarrow 1_A + m \\ S + S & \xrightarrow{m+m} & A + A \\ \downarrow [1_S, 1_S] & & \downarrow [1_A, 1_A] \\ S & \xrightarrow{m} & A \end{array}$$

- for each regular epimorphism $p : E \rightarrow B$ in \mathbb{C} the diagram

$$\begin{array}{ccc}
 E + E & \xrightarrow{p+p} & B + B \\
 \downarrow [1_E, 1_E] & & \downarrow [1_B, 1_B] \\
 E & \xrightarrow{p} & B
 \end{array}$$

is a feeble pullback.

Additive

$$\begin{array}{ccccc}
 & & p \oplus p & & \\
 E \oplus E & \xrightarrow{\begin{bmatrix} 1_E & 1_E \\ 0 & p \end{bmatrix}} & E \oplus B & \xrightarrow{\begin{bmatrix} p & -1_B \\ 0 & 1_B \end{bmatrix}} & B \oplus B \\
 & \downarrow [1_E, 1_E] & \downarrow [1_B, 0] & & \downarrow [1_B, 1_B] \\
 & E & \xrightarrow{p} & B &
 \end{array}$$

$$\begin{aligned}
 \begin{bmatrix} p & -1_B \\ 0 & 1_B \end{bmatrix} &= \begin{bmatrix} 1_B & -1_B \\ 0 & 1_B \end{bmatrix} (p \oplus 1_B) \\
 \begin{bmatrix} 1_E & 1_E \\ 0 & p \end{bmatrix} &= (1 \oplus p) \begin{bmatrix} 1_E & 1_E \\ 0 & 1_E \end{bmatrix}
 \end{aligned}$$

Lextensive

$$\begin{array}{ccccc}
 & & 1_C & & \\
 C & \xrightarrow{\begin{bmatrix} i_j & \gg \end{bmatrix}} & P & \xrightarrow{\begin{bmatrix} p & \gg \end{bmatrix}} & C \\
 & \downarrow g & \downarrow q & & \downarrow g \\
 D & \xrightarrow{\begin{bmatrix} \iota_j & \gg \end{bmatrix}} & D + D & \xrightarrow{\begin{bmatrix} 1_D & 1_D \end{bmatrix}} & D \\
 & & & & \\
 & & D \xrightarrow{\begin{bmatrix} \iota_1 & \gg \end{bmatrix}} D + D & \xrightarrow{\begin{bmatrix} \iota_2 & \gg \end{bmatrix}} & D \\
 & & \uparrow g & \uparrow q & \uparrow g \\
 C & \xrightarrow{\begin{bmatrix} i_1 & \gg \end{bmatrix}} & P & \xrightarrow{\begin{bmatrix} p & \gg \end{bmatrix}} & C \\
 & \downarrow 1_C & \downarrow 1_C & & \downarrow 1_C \\
 & & C & &
 \end{array}$$

Lemma

If

$$\begin{array}{ccc} A & \xrightarrow{f} & B \\ \alpha \downarrow & & \downarrow \beta \\ A' & \xrightarrow{f'} & B' \end{array}$$

is a feeble pullback and α and f are jointly monomorphic, then it is a pullback.

Lemma

For a diagram

$$\begin{array}{ccccc} A & \xrightarrow{f} & B & \xrightarrow{g} & C \\ \alpha \downarrow & \square 1 & \downarrow \beta & \square 2 & \downarrow \gamma \\ A' & \xrightarrow{f'} & B' & \xrightarrow{g'} & C' \end{array}$$

in a regular category \mathbb{C} we have:

- ⑤ if $\square 1$ and $\square 2$ are feeble pullbacks, then so is $\square 1 \square 2$;
- ⑥ if f' is a regular epimorphism and $\square 1 \square 2$ is a feeble pullback, then so is $\square 2$;

Lemma

Let \mathbb{C} be a regular category satisfying Condition 1 let $m : S \rightarrow A$ be a monomorphism and let (R, r_1, r_2) be an equivalence relation on S in \mathbb{C} . The reflexive closure of (R, mr_1, mr_2) is an equivalence relation.

$$\begin{array}{ccc} R + A & \xrightarrow{e} & \bar{R} \\ & \searrow [\langle mr_1, mr_2 \rangle, \langle 1_A, 1_A \rangle] & \swarrow \langle \bar{r}_1, \bar{r}_2 \rangle \\ & A \times A & \end{array}$$
$$\begin{array}{ccc} R + A & \xrightarrow{e} & \bar{R} \\ & \searrow [mr_1, 1_A] & \swarrow \bar{r}_2 \\ & A & \end{array}$$
$$\begin{array}{ccc} & \searrow [mr_2, 1_A] & \swarrow \bar{r}_1 \\ & A & \end{array}$$

$$[\langle mr_1, mr_2 \rangle, \langle 1_A, 1_A \rangle] = \langle [mr_1, 1_A], [mr_2, 1_A] \rangle$$

Proposition

Let \mathbb{C} be an exact category satisfying Condition 1. Every co-reflexive-relation in \mathbb{C} is an effective co-equivalence-relation.

Proof.

Suppose that $[q_1, q_2] : A + A \rightarrow Q$ is an epimorphism and $e : Q \rightarrow A$ is a morphism such that $e[q_1, q_2] = [1_A, 1_A]$. Let $m : S \rightarrow A$ be equalizer of q_1 and q_2 .

$$\begin{array}{ccc}
 \begin{array}{ccc}
 A + S & \xrightarrow{1+m} & A + A \\
 \downarrow 1+m & & \downarrow 1+q_2 \\
 A + A & \xrightarrow{1+q_1} & A + Q \\
 \downarrow [1,1] & & \downarrow [q_1,1] \\
 A & \xrightarrow{q_1} & Q
 \end{array}
 & \quad &
 \begin{array}{ccc}
 S + A & \xrightarrow{m+1} & A + A \\
 \downarrow m+1 & & \downarrow q_1+1 \\
 A + A & \xrightarrow{q_2+1} & Q + A \\
 \downarrow [1,1] & & \downarrow [1,q_2] \\
 A & \xrightarrow{q_2} & Q
 \end{array}
 \end{array}$$

$$\begin{array}{ccc}
 & \xrightarrow{[1_A+m, m+1_A]} & \\
 \begin{array}{ccc}
 (A + S) + (S + A) & \xrightarrow{(1_A+m)+(m+1_A)} & (A + A) + (A + A) \\
 \downarrow [1_A, m] + [m, 1_A] & & \downarrow [1_{A+A}, 1_{A+A}] \\
 A + A & \xrightarrow{q_1+q_2} & Q + Q
 \end{array}
 & \xrightarrow{[q_1, q_2] + [q_1, q_2]} & \begin{array}{ccc}
 A + A & \xrightarrow{[q_1, q_2]} & Q
 \end{array}
 \end{array}$$

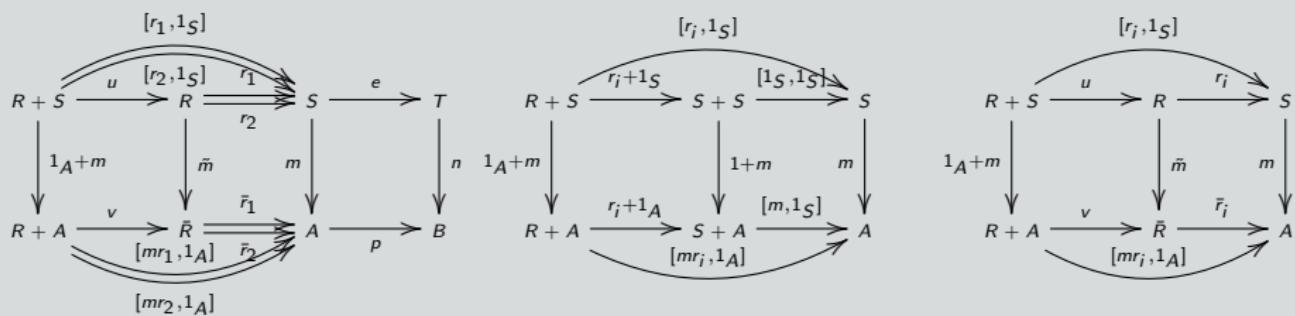
$$\begin{array}{ccc}
 S & \xrightarrow{\begin{smallmatrix} \iota_1 m \\ \iota_2 m \end{smallmatrix}} & A + A \xrightarrow{[q_1, q_2]} Q \\
 \downarrow m & & \downarrow q_1 \\
 A & \xrightarrow{m} & A \\
 \downarrow q_2 & & \downarrow q_1 \\
 A & \xrightarrow{q_2} & Q
 \end{array}$$

Proposition

Let \mathbb{C} be an exact category satisfying Condition 1. The category \mathbb{C} admits pushouts of monomorphisms along regular epimorphisms, which are pullbacks. Monomorphisms are stable under pushout along regular epimorphisms in \mathbb{C} .

Proof.

Let $e : S \rightarrow T$ be a regular epimorphism and let $m : S \rightarrow A$ be a monomorphism.



Proposition

Let \mathbb{C} be a category satisfying Condition 1. \mathbb{C} admits pushouts of monomorphisms along coproduct inclusions, which are pullbacks. Monomorphisms are stable under pushout along coproduct inclusions in \mathbb{C} .

Proof.

$$\begin{array}{ccc} 0 & \longrightarrow & 0 \\ \downarrow & & \downarrow \\ A & \xrightarrow{1_A} & A \end{array} + \begin{array}{ccc} S & \xrightarrow{n} & B \\ 1_S \downarrow & & \downarrow 1_B \\ S & \xrightarrow{n} & B \end{array} = \begin{array}{ccc} S & \xrightarrow{n} & B \\ \iota_2 \downarrow & & \downarrow \iota_2 \\ A + S & \xrightarrow{1+n} & A + B \end{array}$$

□

Proposition

Let \mathbb{C} be an exact category satisfying Condition 1. The pushout of a monomorphism along an arbitrary morphism exists and produces a pullback in \mathbb{C} . Monomorphisms are pushout stable in \mathbb{C} .

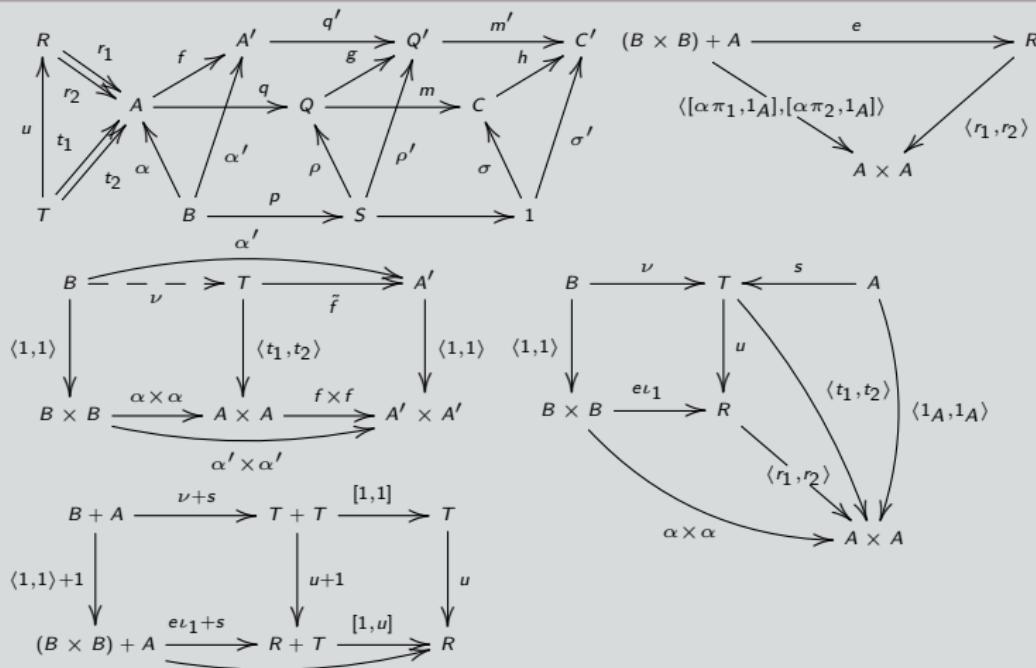
Proof.

$$\begin{array}{ccc} A & \xrightarrow{\iota_1} & A + B & \xrightarrow{[f, 1]} & B \\ & \searrow f & \swarrow & & \end{array}$$

Theorem

Let \mathbb{C} be an exact category satisfying Condition 1. \mathbb{C} is coprotomodular.

Proof.



Theorem

The opposite category of a pretopos with finite colimits is arithmetical and ideally exact.

[Bar71] Michael Barr. “Exact Categories”. In: *in: Lecture Notes in Mathematics* 236 (1971), pp. 1–120.

[BC25] Frances Borceux and Maria Manuel Clementino. “On toposes, algebraic theories, semi-abelian categories and compact Hausdorff spaces”. In: *Theory and Applications of Categories* 43.11 (2025), pp. 363–381.

[Bou91] Dominique Bourn. “Normalization equivalence, kernel equivalence and affine categories”. In: *Category theory (Como, 1990)*. Vol. 1488. Lecture Notes in Mathematics. Springer, Berlin, 1991, pp. 43–62. DOI: 10.1007/BFb0084212. URL: <https://doi.org/10.1007/BFb0084212>.

[GSV19] Marino Gran, Florence Sterck, and Joost Vercruyse. “A semi-abelian extension of a theorem by Takeuchi”. In: *Journal of Pure and Applied Algebra* (2019). ISSN: 0022-4049. DOI: <https://doi.org/10.1016/j.jpaa.2019.01.004>. URL: <http://www.sciencedirect.com/science/article/pii/S002240491930012X>.

[Jan24] George Janelidze. “Ideally exact categories”. In: *Theory and Applications of Categories* 41 (2024), Paper No. 11, 414–425. ISSN: 1201-561X.