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@ The category CHaus, of pointed compact Hausdorff topological spaces is
co-semi-abelian:
Theorem 1.3 of Frances Borceux and Maria Manuel Clementino. “On
toposes, algebraic theories, semi-abelian categories and compact Hausdorff
spaces”. In: Theory and Applications of Categories 43.11 (2025),
pp. 363-381

@ In discussions around the above result Graham Manual suggested the
question of whether the above fact could be a consequence of CHaus being a
pretopos.




Definition

A category is a regular [Bar71] if it is finitely complete (admits all finite limits), regular
epimorphisms are stable under pullback, and coequalizers of kernel pairs exist in it.

p k f
E—B K—A———>B
ko

E'——= B )




A category is a Barr-exact [Bar71] if it is regular and (the projections) of each (internal)
equivalence relations form the kernel pair of some morphism.
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Definition

A category C is a protomodular [Bou91] if each change functor of the fibration of points
reflects isomorphisms.
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If C has an initial object, then C is protomodular if and only if the change of base
along morphisms of the form !5 : 0 — B reflect isomorphisms.
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Definition

A category C is semi-abelian if it pointed, exact, protomodular, and has binary
coproducts.

Examples include:

The category of groups;

Every sub-variety of non-associative algebras over a ring (including
associative, Lie and Leibniz);

Abelian categories;

Cocommutative Hopf algebras [GSV19];

CHaus:’ [BC25];

C3P where C, is the category of pointed objects in a topos;
Ptc(B) where C is semi-abelian;

CX where C is semi-abelian.




A category C is ideally exact [Jan24] if is exact, protomodular, admits finite coproducts
and the unique morphism from 0 — 1 is a regular epimorphism.

Examples include:
@ semi-abelian categories;
@ unital algebras over a ring;
@ (B C) where C is ideally exact;

Note that if C is ideally exact then for each B in C the category Ptc(B) is
semi-abelian.




Definition

A category is extensive if it has finite coproducts and each functor

(CLA) % (C}B)——(CLA+B)
((X7f)7(Y7g))|—>(X+Y7f+g)
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is an equivalence of categories. This is equivalent to requiring that is has finite
coproducts, pullbacks of coproduct inclusions along arbitrary morphisms exist, and for
A— >

each diagram
c
A Cc

in which (2) is a coproduct (diagram), (1) is a coproduct if and only if (3) and (4) are
pullbacks.
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Definition

A category is a pretopos if it is Barr-exact and extensive.

Examples include:

@ Toposes;

CHaus;

The category Set,; of sets of cardinality bounded by k;
(C | B) where C is a pretopos;

C* where C is a pretopos.




If C be a pretopos, then

@ pushouts of monomorphisms along arbitrary morphisms exist and form pullbacks in
C;

@ monomorphisms are stable under pushout in C i.e. ‘C is coregular minus the
existence of all finite colimits;”

@ co-reflexive-relations are effective co-equivalence-relations in C;

@ C is co-exact as soon as C admits pushouts of (regular) epimorphisms along
(regular) epimorphisms;

@ C is co-protomodular;

@ C is co-ideally-exact (provided the above mentioned pushouts exist).




Definition

A category C is additive if admits finite products and is enriched in abelian groups, which
amounts to requiring that its hom-sets are equipped with an abelian group structures
which are bilinear with respect to composition.

AfoBp—Ssc_—.p i(g + h)f = igf + ihf
h

Definition

A category is abelian if it is additive and exact.

Recall:

Proposition

If C is an abelian category, then C% is an abelian category (and in particular C is
co-exact).




finite coproducts exist in C;

binary coproducts of pullback squares are pullback squares in C;

For each monomorphism m:S — A in C the diagram

S+s % A4S

[1s,1s]i \L[lA,m]

S—m>A

is a pullback;
@ for each regular epimorphism p : E — B in C the diagram

E+E-"*.B+B

[lEle]\L l[lsle]

E4P>B

is a feeble pullback (i.e. the unique morphism into the pullback is a regular
epimorphism). 7 i b




Proposition

If C is an exact category satisfying Condition 1, then
@ pushouts of monomorphisms exist in C and are pullbacks;
@ monomorphisms are stable under pushout in C;
@ monomorphisms and regular monomorphisms conincide in C and C is balanced;
@ co-reflexive-relations in C are effective co-equivalence relations;

@ C is co-exact as soon as it admits pushouts of (regular) epimorphisms along
(regular) epimorphisms;

@ C is co-protomodular.




@ finite coproducts exist in C;
Additive Lextensive

binary products are coproducts by assumption

@ binary coproducts of pullback squares are pullback squares in C;
Additive Lextensive

products of pullbacks equivalences of categories
are pullbacks preserve limits




@ For each monomorphism m: S — A in C the diagram

S+s™s ats

[1svls]l l[lAvm]

is a pullback;
Additive Lextensive
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@ for each regular epimorphism p : E — B in C the diagram

E+E-"P ByB

[1E71£]l

is a feeble pullback.
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A ! B’

is a feeble pullback and o and f are jointly monomorphic, then it is a pullback.

For a diagram

A— B f.¢C
el
g/
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in a regular category C we have:

@ If and are feeble pullbacks, then so is ,'

@ iff' is a regular epimorphism and is a feeble pullback, then so is ,' 1
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Let C be a regular category satisfying Condition 1 let m : S — A be a monomorphism
and let (R, r, ) be a equivalence relation on S in C. The reflexive closure of
(R, mri, mr2) is an equivalence relation.

R+A%R R+A%R

[mr1,1a] 7
[{mry.mr2),(14,12)] (f1,72) [mry,14]

[{mry, mra), (14, 14)] = ([mry, 1], [mra, 141D
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Proposition

Let C be an exact category satisfying Condition 1. Every co-reflexive-relation in C is an
effective co-equivalence-relation.




Suppose that [g1, 2] : A+ A — Q is an epimorphism and e : Q — A is a morphism such
that e[q1, g2] = [1a, 1a]. Let m: S — A be equalizer of g1 and qo.
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Let C be an exact category satisfying Condition 1. The category C admits pushouts of
monomorphisms along regular epimorphisms, which are pullbacks. Monomorphisms are
stable under pushout along regular epimorphisms in C.

A\

Let e : S — T be a regular epimorphism and let m: S — A be a monomorphism.
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Let C be a category satisfying Condition 1. C admits pushouts of monomorphisms along
coproduct inclusions, which are pullbacks. Monomorphisms are stable under pushout
along coproduct inclusions in C.
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Proposition

Let C be an exact category satisfying Condition 1. The pushout of a monomorphism
along an arbitrary morphism exists and produces a pullback in C. Monomorphisms are

pushout stable in C.
v

L1 [F,1]
A——A+B——B
\/

f




Let C be an exact category satisfying Condition 1. C is coprotomodular.
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The opposite category of a pretopos with finite colimits is arithmetical and ideally exact.
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