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The duality

The classical pointfree versions of topological spaces are frames. A frame is a complete lattice

L where the distributivity law
(\/Xi) Ny = \/(Xi AY)

holds. Frames form the category Frm when equipped with maps which preserve arbitrary joins
and finite meets.
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The duality

The classical pointfree versions of topological spaces are frames. A frame is a complete lattice

L where the distributivity law
(\/Xi) Ny = \/(Xi AY)
i i
holds. Frames form the category Frm when equipped with maps which preserve arbitrary joins
and finite meets. We have an adjunction

pt
_
Frm°P T Top

Q
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Sublocales

Isomorphism classes of frame surjections are in bijective correspondence with subsets of L
certain subsets of L called sublocales.

4/33



Sublocales

Isomorphism classes of frame surjections are in bijective correspondence with subsets of L
certain subsets of L called sublocales. These are subsets S C L such that:

® S is closed under all meets;
o [fscSand xc Lthen x —+s¢cS.

4/33



Sublocales

Isomorphism classes of frame surjections are in bijective correspondence with subsets of L
certain subsets of L called sublocales. These are subsets S C L such that:

® S is closed under all meets;
o [fscSand xc Lthen x —+s¢cS.

We will mention some important facts about sublocales.

The ordered collection S(L) of sublocales of a frame L is a coframe. Meets are set-theoretical
intersections.
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Open and closed sublocales

Every element a € L determines an open sublocale o(a) C L and a closed one ¢(a) C L. We
will only

® The collection S,(L) € S(L) of intersections of closed sublocales is a subcoframe of S(L).
® The collection S¢(L) C S(L) of joins of closed sublocales is a subframe of S(L).

® The collection Sp(L) C S(L) of joins of complemented sublocales is a subcolocale, in
particular it is the Booleanization of S(L).
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Raney extensions

We now introduce Raney extensions. Today we give a definition equivalent to the original one.
A Raney extension is a pair (L, F) such that L is a frame and F C S,(L) is a subcolocale. A
morphism f : (L, F) — (M, G) between Raney extensions is a frame map f : L - M
compatible with F and G in a precise sense beyond the scope of this talk.
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Raney extensions

We now introduce Raney extensions. Today we give a definition equivalent to the original one.
A Raney extension is a pair (L, F) such that L is a frame and F C S,(L) is a subcolocale. A
morphism f : (L, F) — (M, G) between Raney extensions is a frame map f : L - M
compatible with F and G in a precise sense beyond the scope of this talk.

® For a topological space, let U(X) be the ordered collection of intersections of open sets,
called the saturated sets. The pair (2(X),U(X)) is a Raney extension.

® The pair (L,S,(L)) is obviously a Raney extension for every frame L.

® The pair (L,S(L)°?) is a Raney extension for every frame L.
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Raney extensions

We regard Raney extensions as pointfree Tg spaces in light of the following result.

There is a dual adjunction Qg : Top = Raney? : ptg, extending Top = Frm®P : pt, such
that the fixpoints in Top are the Ty spaces.
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Raney extensions

The Raney extensions (L,S,(L)) and (L,Sc(L)°P) are especially significant.

For every Raney extension (L, C) there are surjections

(LC)

(LSo(1)) ~% (L, €) "D (L,S,(1)%).

Up to homeomorphism, the dualizations of these surjections are subspace inclusions:

ptp(L) 22T (L, €) PHE (1),
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Raney extensions

The Raney extensions (L,S,(L)) and (L,Sc(L)°P) are especially significant.

For every Raney extension (L, C) there are surjections

(L,So(L)) 2% (1, €) T2 (L, So(L)°P).

Up to homeomorphism, the dualizations of these surjections are subspace inclusions:

ptp(L) 22T (L, €) PHE (1),

In fact, the assignment L — (L,S,(L)) determines a functor S, : Frm — Raney. This is left
adjoint to the forgetful functor w1 : Raney — Frm. The assignment L — (L,S.(L)°) is not
functorial. We call Frmg the wide subcategory of Frm whose morphisms are the exact maps,

the ones who do lift.
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Strictly zero-dimensional biframes

Another approach is that of strictly zero-dimensional biframes. These were studied in detail by
Manuell in Strictly zero-dimensional biframes and a characterization of congruence frames
(2018). A stricly zero-dimensional biframe may be identified with a pair (L, D) where L is a
frame, and D is a dense subcolocale of S(L). A morphism f : (L, D) — (M, E) between stricly
zero-dimensional biframes is a frame map f : L —+ M compatible with D and &.

® For a space X, the pair (Q2(X), Sk(X)), where Sk(X) are the opens in the Skula topology,
is a strictly zero-dimensional biframe.

® The pair (L,S(L)) is obviously a strictly zero-dimensional biframe for every frame L.

® The pair (L,Sp(L)) is a strictly zero-dimensional biframe for every frame L.
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Strictly zero-dimensional biframes

We regard strictly zero-dimensional biframes as pointfree Ty spaces in light of the following
result.

There is a dual adjunction Sk : Top < SZD®P : ptg, extending Top = Frm®P : pt, such that
the fixpoints in Top are the Ty spaces.
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Strictly zero-dimensional biframes

We regard strictly zero-dimensional biframes as pointfree Ty spaces in light of the following
result.

There is a dual adjunction Sk : Top < SZD®P : ptg, extending Top = Frm®P : pt, such that
the fixpoints in Top are the Ty spaces.

The functor Sk sends a space X to the strictly zero-dimensional biframe (£2(X), Sk(X))
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Strictly zero-dimensional biframes

For a frame L, we have the strictly zero-dimensional biframes (L,S(L)) and (L,Sp(L)). The
following results are gathered from Manuell, 2018.

For every strictly zero-dimensional biframe (L, D) there are surjections

A, c)

(L,S(L)) —

Up to homeomorphism, the dualizations of these surjections are subspace inclusions:

(L, D) =2 (L,Se(L)).

ptp(L) 22 prg(r, D) P2 (1),
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Strictly zero-dimensional biframes

For a frame L, we have the strictly zero-dimensional biframes (L,S(L)) and (L,Sp(L)). The
following results are gathered from Manuell, 2018.

For every strictly zero-dimensional biframe (L, D) there are surjections

(L,S(1) 24 (1, D) 249 (1, 54(L).

Up to homeomorphism, the dualizations of these surjections are subspace inclusions:

ptp(L) 22 prg(r, D) P2 (1),

Once again, the assignment L — (L,S(L)) is functorial and is left adjoint to the forgetful
functor to Frm. But the assignment L — (L,Sp(L)) is not. We call Frmg the subcategory of

Frm whose morphisms lift to this.
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Dualizing objects

We follow definitions from Tholen and Porst, Concrete dualities, 1991. Suppose there are
categories A and B with underlying set functors U : A — Set and V : B — Set.
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Dualizing objects

We follow definitions from Tholen and Porst, Concrete dualities, 1991. Suppose there are
categories A and B with underlying set functors U : A — Set and V : B — Set. Suppose,
also that there are A € A and B € B such that U =

If this holds, for X € A, and x € UX, there is an evaluation map
E(x.x) +AX, A) = U(A),

defined as g(x )(s) = Us(x) for all s € A(X, A). Similarly, there is another evaluation map
Ny.y) : B(Y,B) — VB,

defined as 7y ) (t) = Vi(y).
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Dualizing objects

A triple (A, B,7) with A€ A, B € B, and 7: UA = VB a bijection with inverse o, is called a
dualizing object if the following two properties hold.
L. For all X € A, the family 7¢(x 5 : A(X, A) — VB, for a € UA, admits an initial lifting
TE(Aa) - TA — B.
2. For all Y € B, the family ony p) : B(Y, B) — UA, for b € VY, admits an initial lifting
ony,py : SY = A
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2. For all Y € B, the family ony p) : B(Y, B) — UA, for b € VY, admits an initial lifting
ony,py : SY = A

For every dualizing object (A, B, T), there is a dual adjunction T : A< B : S strictly
represented by A and B.
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Dualizing objects

A triple (A, B,7) with A€ A, B € B, and 7: UA = VB a bijection with inverse o, is called a
dualizing object if the following two properties hold.

L. For all X € A, the family 7¢(x 5 : A(X, A) — VB, for a € UA, admits an initial lifting
TE(Aa) - TA — B.

2. For all Y € B, the family ony p) : B(Y, B) — UA, for b € VY, admits an initial lifting
ony,py : SY = A

For every dualizing object (A, B, T), there is a dual adjunction T : A< B : S strictly
represented by A and B. In particular:

1. US = B(—,B) and VT = A(—, A).

2. For X € A and x € UX, for each x € UX the unit is defined as x — £(x x), where the
latter is the initial lifting €(x x) : TX — B.
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General theories of T spaces

A pointfree category of Ty spaces consists of
® A functor O : C — Frm from some category C;
® An object 2¢ € C;
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General theories of T spaces

A pointfree category of Ty spaces consists of
® A functor O : C — Frm from some category C;
® An object 2¢ € C;
such that:
e () is faithful and essentially surjective;
® The pair (2¢,S) is a dualizing object;
® The fixpoints in Top of the resulting adjunction (—,S) : Top = C : (—,2¢) are the Ty
spaces.
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General theories of T; spaces

We call Q¢ : and pt; : the two functors arising from the pair (2¢,S). We note that the
category C is understood to have V o O as the underlying set functor, where V : Frm — Set is
that functor for frames. Then Top(X,S) is just the underlying set of the frame O(Q¢(X)).

If (O :C — Frm,2¢) is a pointfree category of Ty spaces, the functors O o Q¢ and Q are
naturally isomorphic.

(Sketch). We prove that the two underlying sets are the same. Both Q¢ - pt, and Q - pt
have S as a dualizing object, and so VOQ¢(X) = Top(X,S) = VQX. O

We call ( : OQ¢ — € the natural isomorphism given by the lemma above.
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General theories of T spaces

If (O :C — Frm,2¢) is a pointfree theory of Ty spaces there is a diagram as follows in which
the right adjoints commute up to natural isomorphism.

Ptc
C

Qc
pt
Frm ~ 1 Q Top®P

Top

In other words, O determines a lax map of adjunctions.
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General theories of T; spaces

Let n and 1€ be the units in Frm and in C, respectively. Let o, and o€ be the corresponding
counits. Recall that by our main definition we know the following.

The counit O')C< is a homeomorphism for every X € Top.
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General theories of T spaces

Let n and 1€ be the units in Frm and in C, respectively. Let o, and o€ be the corresponding
counits. Recall that by our main definition we know the following.

The counit O')c< is a homeomorphism for every X € Top.

We can also prove an important fact about the unit 7.

Let C be a category of Tg spaces. For C € C, (pt,c © Onc : OC — Qpt. C satisfies

Onc(a) = {f € ptc(C) | Of(a) = 1}.

In particular, this is a frame surjection.
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General theories of T spaces

Mate theory guarantees the existence of a natural transformation & : pt; — pto O. This is the
composition:

PtCpteC ptO(1¢)

ptoC o e ptQpt,C ——— > ptOQept,C ptOC.
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General theories of T; spaces

Mate theory guarantees the existence of a natural transformation & : pt; — pto O. This is the
composition:

t tCpt tO(nS
ptoC o e ptQpt, C _ P, ptOQcpt, C P—(ﬂc)> ptOC.

Proposition

The map &c : pte(C) — pt(O(C)) is a subspace embedding for all C € C.

We look at the diagram above. The sobrification o, ¢ is a subspace embedding as pt,C is a
To space. The second morphism is an isomorphism, as (¢ is. The third is a subspace
embedding, as we have shown that (’)(n(é-) is a frame surjection. Ol
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Initial and terminal objects of fibers

For a pointfree theory of Ty spaces (O : C — Frm,2¢), we define the fiber O~1(L) of a frame
L to be the category:

® Whose objects are pairs (C, ) where C € C and 6 : OC = L is an isomorphism;

® Whose morphisms f : (Cy,61) — (G, 62) are maps f : C; — G in C such that the
following commutes in Frm.

) —f 5 0(6)

\/
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Initial and terminal objects of fibers

We call C; be the full subcategory of C determined by the initial objects of the fibers, and Cr

that of the terminal ones. Consider the composite functor below, where /7 is subcategory
inclusion.

}
Cr —= C 9 . Frm
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Initial and terminal objects of fibers

We call C; be the full subcategory of C determined by the initial objects of the fibers, and Cr
that of the terminal ones. Consider the composite functor below, where /7 is subcategory
inclusion.

Cr - Z ,c—9 5 Fm

The functor is faithful. It is essentially surjective iff every frame has an initial object in its
fiber. In general, this will not be full. We call Frmz the essential image of this functor.
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Initial and terminal objects of fibers

We call C; be the full subcategory of C determined by the initial objects of the fibers, and Cr

that of the terminal ones. Consider the composite functor below, where /7 is subcategory
inclusion.

Cr - Z ,c—9 5 Fm

The functor is faithful. It is essentially surjective iff every frame has an initial object in its
fiber. In general, this will not be full. We call Frmz the essential image of this functor.
Similarly, we call Frmy the image of

Cr < i C o Frm,

the analogous construction for terminal objects.
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Initial and terminal objects of fibers

We say that a pointfree theory (O : C — Frm,2¢) of Ty spaces is bounded if every fiber has
both an initial and a terminal object.

SZD and Raney are both bounded. As we have seen:

® For a Raney extension (L, F) the initial object of its fiber is (L,S,(L)), and the terminal
one is (L, S¢(L)°P).

® For a strictly zero-dimensional biframe (L, D) the initial object of its fiber is (L, S(L)), and
the terminal one is (L, Sp(L)).

v
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Initial and terminal objects of fibers

We say that a pointfree theory (O : C — Frm,2¢) of Ty spaces is bounded if every fiber has

both an initial and a terminal object.

SZD and Raney are both bounded. As we have seen:

® For a Raney extension (L, F) the initial object of its fiber is (L, S,(L)), and the terminal

one is (L, S¢(L)°P).

® For a strictly zero-dimensional biframe (L, D) the initial object of its fiber is (L, S(L)), and

the terminal one is (L, Sp(L)).

If C € C is such that its fiber O~1(O(C)) has both an initial object | and a terminal object T,

there are subspace embeddings

pte(T) C pte(C) C pte(f).
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Initial and terminal objects of fibers

We say that a pointfree theory (O : C — Frm,2¢) of Ty spaces is bounded if every fiber has

both an initial and a terminal object.

SZD and Raney are both bounded. As we have seen:

® For a Raney extension (L, F) the initial object of its fiber is (L, S,(L)), and the terminal

one is (L, S¢(L)°P).

® For a strictly zero-dimensional biframe (L, D) the initial object of its fiber is (L, S(L)), and

the terminal one is (L, Sp(L)).

If C € C is such that its fiber O~1(O(C)) has both an initial object | and a terminal object T,

there are subspace embeddings

pte(T) C pte(C) C pte(f).
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Boundedness and reasonableness

We say that (O : C — Frm,2¢) is reasonable if in O~1(2) the object 2¢ is both initial and
terminal. We now define two new spectrum functors. For a frame L we define pt7(L) as the
set of all morphisms f : L — 2 in Frmz. We topologize it via the usual Stone map. We define
ptr similarly. Recall the subspace embedding {¢ : ptoC — ptOC. We call ¢ and €7 the
co-restrictions to ptz;OC and pt-OC, respectively.
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Boundedness and reasonableness

We say that (O : C — Frm,2¢) is reasonable if in O~1(2) the object 2¢ is both initial and
terminal. We now define two new spectrum functors. For a frame L we define pt7(L) as the
set of all morphisms f : L — 2 in Frmz. We topologize it via the usual Stone map. We define
ptr similarly. Recall the subspace embedding {¢ : ptoC — ptOC. We call ¢ and €7 the
co-restrictions to ptz;OC and pt-OC, respectively.

Proposition

In a reasonable pointfree theory of Ty spaces (O : C — Frm,2¢), and L € Frm:
L. If I € O7Y(L) is an initial object, &' : pto(I) — ptz(L) is a homeomorphism.
2. If T € O7Y(L) is a terminal object, £ : pto(T) — pt(L) is a homeomorphism.
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Boundedness and reasonableness

If (O : C — Frm,2¢) is bounded and reasonable, all C € C there are subspace embeddings

pt7(O(C)) = pte(C) = ptz(O(C)).
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Boundedness and reasonableness

If (O : C — Frm,2¢) is bounded and reasonable, all C € C there are subspace embeddings

pt7(O(C)) = pte(C) = ptz(O(C)).

Raney and SZD are both bounded and reasonable.
® For Raney, Frmy is Frmg. The subspace inclusion above is ptp(L) C ptp(L, F) C pt(L).
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Boundedness and reasonableness

If (O : C — Frm,2¢) is bounded and reasonable, all C € C there are subspace embeddings

ptr(O(C)) = ptc(C) = ptz(O(C)).

Raney and SZD are both bounded and reasonable.
® For Raney, Frmy is Frmg. The subspace inclusion above is pty(L) C pte(L, F) C pt(L).
® For SZD, Frmy is Frmpg. The subspace inclusion above is ptp(L) C ptg(L, D) C pt(L).
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Duality for terminal objects

We say that (O : C — Frm, 2¢) is spatially terminal if whenever T is terminal in its fiber so is
its spatialization Qcpt, T.

Both Raney and SZD are terminally spatial. \

We begin constructing the duality. We call Top+ the essential image of the functor
ptr : Frm° — Top.

Proposition

If (O : C — Frm,2¢) is spatially terminal, then Tops is a full subcategory of Top.
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Duality for terminal objects

Suppose that (O : C — Frm,2¢) is bounded, reasonable, and spatially terminal. For every
frame L, the map ¢ : L — Qpt,L defined as

n'(a) = {f e pty(L) | f(a) =1}

is in Frmy.
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Duality for terminal objects

Suppose that (O : C — Frm,2¢) is bounded, reasonable, and spatially terminal. For every
frame L, the map ¢ : L — Qpt,L defined as

n'(a) = {f e pty(L) | f(a) =1}

is in Frmy.

Suppose that (O : C — Frm, 2¢) is bounded, reasonable, and spatially terminal. For a space
X € Topy, the characteristic map QX — 2 is in Frmy for every point x € X. So, there is a
well-defined map o7 : X — pt-QX.
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Duality for terminal objects

We have reached the main theorem.

Suppose that (O : C — Frm, 2¢) is bounded, reasonable, and spatially terminal. There is an
adjunction 2 : Topyr & Frmgf’ : pt+ with Q = pt1 where all elements of Top are fixpoints.
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Duality for terminal objects: the big picture

ITOO(E)

/\ v
Topr L FrmP

ptr
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Duality for terminal objects: concrete examples

Qr Sk
T T
Top L Raney®? Top €L SZD°P
\_/ \_/
ptg Ptg
Qr Sk
T~ T
Topp € Raney?? Topp 1L SZD¥
v v
ptr ptg
o) o)
Q Q
R T
Topp s Frmg’ Topp L Frmy}
\_/ v

Ptp ptr
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Duality for initial objects

We may want to look at the case where C has free objects. In this case, obtaining a similar
duality for initial objects is very simple.

Proposition

If O : C — Frm has a left adjoint F : Frm — C, then for every frame L its fiber has FL as its
initial object.
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Duality for initial objects

We may want to look at the case where C has free objects. In this case, obtaining a similar
duality for initial objects is very simple.

Proposition

If O : C — Frm has a left adjoint F : Frm — C, then for every frame L its fiber has FL as its
initial object.

In both Raney and SZD the forgetful functor to Frm has a left adjoint. For a frame L, the
initial object of the fiber in Raney is (L,S,(L)), and the initial object of the fiber in SZD is

(L, S(L)).
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Duality for initial objects

The duality for initial objects, under relatively weak assumptions, collapses to the usual duality
for sober spaces.

If O : C — Frm has a left adjoint, and is reasonable, then

1. Frmz = Frm;

2. ptI = pt,
3. Top; = Sob.
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Duality for initial objects: the big picture
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Duality for initial objects: concrete examples

Qg Sk
T PR
Top L Raney®? Top L SZD¢°P
~_ ~_ 7
ptg Ptg
Qg Sk
R P
Sob 1 Raney? Sob 1 SZD?¥
o(=) o(=)
Q Q
T T
Sob L Frm°®P Sob L Frm®P
ﬁ\\\\s‘__///// ~_
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Open questions

Then, for both Raney and SZD, even if Frmg and Frmpg are different, the spectra induced by
them are both ptp. Equivalently, any terminal element T € C of some fiber is always such

that pto(T) = ptp(OT). The Tp axiom, and a duality for it, in both cases arises naturally
when restricting to terminal objects.
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Open questions

Then, for both Raney and SZD, even if Frmg and Frmpg are different, the spectra induced by
them are both ptp. Equivalently, any terminal element T € C of some fiber is always such
that pto(T) = ptp(OT). The Tp axiom, and a duality for it, in both cases arises naturally
when restricting to terminal objects.

Is this the case for all pointfree theories of Ty spaces? If not, what are some natural
assumptions on a pointfree theory O : C — Frm of T spaces that imply this? Can we define a
useful such O : C — Frm where the terminal objects of the fibers are some other class of
spaces, e.g. the Ty spaces?

Another possible direction is to define a notion of morphism between pointfree theories of Ty
spaces, and check how close Raney or SZD are to being universal in some sense in this
category.
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