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The duality

The classical pointfree versions of topological spaces are frames. A frame is a complete lattice
L where the distributivity law

(
∨
i

xi ) ∧ y =
∨
i

(xi ∧ y)

holds. Frames form the category Frm when equipped with maps which preserve arbitrary joins
and finite meets.

We have an adjunction

Frmop Top
pt

Ω

⊣
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Sublocales

Isomorphism classes of frame surjections are in bijective correspondence with subsets of L
certain subsets of L called sublocales.

These are subsets S ⊆ L such that:

• S is closed under all meets;

• If s ∈ S and x ∈ L then x → s ∈ S .

We will mention some important facts about sublocales.

Theorem

The ordered collection S(L) of sublocales of a frame L is a coframe. Meets are set-theoretical
intersections.
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Open and closed sublocales

Every element a ∈ L determines an open sublocale o(a) ⊆ L and a closed one c(a) ⊆ L. We
will only

• The collection So(L) ⊆ S(L) of intersections of closed sublocales is a subcoframe of S(L).

• The collection Sc(L) ⊆ S(L) of joins of closed sublocales is a subframe of S(L).

• The collection Sb(L) ⊆ S(L) of joins of complemented sublocales is a subcolocale, in
particular it is the Booleanization of S(L).
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Raney extensions

We now introduce Raney extensions. Today we give a definition equivalent to the original one.
A Raney extension is a pair (L,F) such that L is a frame and F ⊆ So(L) is a subcolocale. A
morphism f : (L,F) → (M,G) between Raney extensions is a frame map f : L → M
compatible with F and G in a precise sense beyond the scope of this talk.

Example

• For a topological space, let U(X ) be the ordered collection of intersections of open sets,
called the saturated sets. The pair (Ω(X ),U(X )) is a Raney extension.

• The pair (L,So(L)) is obviously a Raney extension for every frame L.

• The pair (L,Sc(L)
op) is a Raney extension for every frame L.
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Raney extensions

We regard Raney extensions as pointfree T0 spaces in light of the following result.

Theorem

There is a dual adjunction ΩR : Top ⇆ Raneyop : ptR , extending Top ⇆ Frmop : pt, such
that the fixpoints in Top are the T0 spaces.
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Raney extensions

The Raney extensions (L,So(L)) and (L,Sc(L)
op) are especially significant.

Theorem

For every Raney extension (L,C ) there are surjections

(L,So(L)) (L,C ) (L,Sc(L)
op).

Σ(L,C) τ(L,C)

Up to homeomorphism, the dualizations of these surjections are subspace inclusions:

ptD(L) ptR(L,C ) pt(L).
ptR(τ) ptR(Σ)

In fact, the assignment L 7→ (L,So(L)) determines a functor So : Frm → Raney. This is left
adjoint to the forgetful functor π1 : Raney → Frm. The assignment L 7→ (L, Sc(L)

op) is not
functorial. We call FrmE the wide subcategory of Frm whose morphisms are the exact maps,
the ones who do lift.
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Strictly zero-dimensional biframes

Another approach is that of strictly zero-dimensional biframes. These were studied in detail by
Manuell in Strictly zero-dimensional biframes and a characterization of congruence frames
(2018). A stricly zero-dimensional biframe may be identified with a pair (L,D) where L is a
frame, and D is a dense subcolocale of S(L). A morphism f : (L,D) → (M, E) between stricly
zero-dimensional biframes is a frame map f : L → M compatible with D and E .

Example

• For a space X , the pair (Ω(X ), Sk(X )), where Sk(X ) are the opens in the Skula topology,
is a strictly zero-dimensional biframe.

• The pair (L,S(L)) is obviously a strictly zero-dimensional biframe for every frame L.

• The pair (L,Sb(L)) is a strictly zero-dimensional biframe for every frame L.
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Strictly zero-dimensional biframes

We regard strictly zero-dimensional biframes as pointfree T0 spaces in light of the following
result.

Theorem

There is a dual adjunction Sk : Top ⇆ SZDop : ptB , extending Top ⇆ Frmop : pt, such that
the fixpoints in Top are the T0 spaces.

The functor Sk sends a space X to the strictly zero-dimensional biframe (Ω(X ),Sk(X ))
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Strictly zero-dimensional biframes

For a frame L, we have the strictly zero-dimensional biframes (L,S(L)) and (L,Sb(L)). The
following results are gathered from Manuell, 2018.

Theorem

For every strictly zero-dimensional biframe (L,D) there are surjections

(L,S(L)) (L,D) (L,Sb(L)).
∆(L,C) ι(L,C)

Up to homeomorphism, the dualizations of these surjections are subspace inclusions:

ptD(L) ptB(L,D) pt(L).
ptB(ι) ptB(∆)

Once again, the assignment L 7→ (L,S(L)) is functorial and is left adjoint to the forgetful
functor to Frm. But the assignment L 7→ (L,Sb(L)) is not. We call FrmB the subcategory of
Frm whose morphisms lift to this.
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Dualizing objects

We follow definitions from Tholen and Porst, Concrete dualities, 1991. Suppose there are
categories A and B with underlying set functors U : A → Set and V : B → Set.

Suppose,
also that there are A ∈ A and B ∈ B such that U =

If this holds, for X ∈ A, and x ∈ UX , there is an evaluation map

ε(X ,x) : A(X ,A) → U(A),

defined as ε(X ,x)(s) = Us(x) for all s ∈ A(X ,A). Similarly, there is another evaluation map

η(Y ,y) : B(Y ,B) → VB,

defined as η(Y ,y)(t) = Vt(y).
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Dualizing objects

A triple (A,B, τ) with A ∈ A, B ∈ B, and τ : UA ∼= VB a bijection with inverse σ, is called a
dualizing object if the following two properties hold.

1. For all X ∈ A, the family τε(X ,a) : A(X ,A) → VB, for a ∈ UA, admits an initial lifting
τε(A,a) : TA → B.

2. For all Y ∈ B, the family ση(Y ,b) : B(Y ,B) → UA, for b ∈ VY , admits an initial lifting
ση(Y ,b) : SY → A.

Theorem

For every dualizing object (A,B, τ), there is a dual adjunction T : A ⇆ B : S strictly
represented by A and B. In particular:

1. US = B(−,B) and VT = A(−,A).

2. For X ∈ A and x ∈ UX, for each x ∈ UX the unit is defined as x 7→ ε(X ,x), where the
latter is the initial lifting ε(X ,x) : TX → B.
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General theories of T0 spaces

A pointfree category of T0 spaces consists of

• A functor O : C → Frm from some category C;
• An object 2C ∈ C;

such that:

• O is faithful and essentially surjective;

• The pair (2C ,S) is a dualizing object;

• The fixpoints in Top of the resulting adjunction (−,S) : Top ⇆ C : (−, 2C) are the T0

spaces.
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General theories of T0 spaces

We call ΩC : and ptC : the two functors arising from the pair (2C , S). We note that the
category C is understood to have V ◦O as the underlying set functor, where V : Frm → Set is
that functor for frames. Then Top(X ,S) is just the underlying set of the frame O(ΩC(X )).

Lemma

If (O : C → Frm, 2C) is a pointfree category of T0 spaces, the functors O ◦ ΩC and Ω are
naturally isomorphic.

Proof.

(Sketch). We prove that the two underlying sets are the same. Both ΩC ⊣ ptC and Ω ⊣ pt
have S as a dualizing object, and so VOΩC(X ) ∼= Top(X , S) ∼= VΩX .

We call ζ : OΩC → Ω the natural isomorphism given by the lemma above.

15 / 33



General theories of T0 spaces

Proposition

If (O : C → Frm, 2C) is a pointfree theory of T0 spaces there is a diagram as follows in which
the right adjoints commute up to natural isomorphism.

C Topop

Frm Topop

ptC

O
ΩC

⊣

pt

Ω

⊣

In other words, O determines a lax map of adjunctions.
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General theories of T0 spaces

Let η and ηC be the units in Frm and in C, respectively. Let σ, and σC be the corresponding
counits. Recall that by our main definition we know the following.

Fact

The counit σC
X is a homeomorphism for every X ∈ Top.

We can also prove an important fact about the unit ηC .

Lemma

Let C be a category of T0 spaces. For C ∈ C, ζptCC ◦ OηC : OC → ΩptCC satisfies

OηC (a) = {f ∈ ptC(C ) | Of (a) = 1}.

In particular, this is a frame surjection.
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General theories of T0 spaces

Mate theory guarantees the existence of a natural transformation ξ : ptC → pt ◦ O. This is the
composition:

ptCC ptΩptCC ptOΩCptCC ptOC .
σptCC ptζptCC ptO(ηCC )

Proposition

The map ξC : ptC(C ) → pt(O(C )) is a subspace embedding for all C ∈ C.

Proof.

We look at the diagram above. The sobrification σptCC is a subspace embedding as ptCC is a
T0 space. The second morphism is an isomorphism, as ζptCC is. The third is a subspace
embedding, as we have shown that O(ηCC ) is a frame surjection.
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Initial and terminal objects of fibers

For a pointfree theory of T0 spaces (O : C → Frm, 2C), we define the fiber O−1(L) of a frame
L to be the category:

• Whose objects are pairs (C , θ) where C ∈ C and θ : OC ∼= L is an isomorphism;

• Whose morphisms f : (C1, θ1) → (C2, θ2) are maps f : C1 → C2 in C such that the
following commutes in Frm.

O(C1) O(C2)

L
θ1

Of

θ2
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Initial and terminal objects of fibers

We call CI be the full subcategory of C determined by the initial objects of the fibers, and CT
that of the terminal ones. Consider the composite functor below, where II is subcategory
inclusion.

CI C Frm
II O

The functor is faithful. It is essentially surjective iff every frame has an initial object in its
fiber. In general, this will not be full. We call FrmI the essential image of this functor.
Similarly, we call FrmT the image of

CT C Frm,
IT O

the analogous construction for terminal objects.
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Initial and terminal objects of fibers

We say that a pointfree theory (O : C → Frm, 2C) of T0 spaces is bounded if every fiber has
both an initial and a terminal object.

Example

SZD and Raney are both bounded. As we have seen:

• For a Raney extension (L,F) the initial object of its fiber is (L,So(L)), and the terminal
one is (L,Sc(L)

op).

• For a strictly zero-dimensional biframe (L,D) the initial object of its fiber is (L,S(L)), and
the terminal one is (L,Sb(L)).

Proposition

If C ∈ C is such that its fiber O−1(O(C )) has both an initial object I and a terminal object T ,
there are subspace embeddings

ptC(T ) ⊆ ptC(C ) ⊆ ptC(I ).

Example

• For a Raney extension (L,F), as shown previously there are subspace embeddings
ptR(L,Sc(L)

op) ⊆ ptR(L,F) ⊆ ptR(L,So(L)).

• For a strictly zero-dimensional biframe (L,D), as shown previously there are subspace
embeddings ptB(L, Sb(L)) ⊆ ptR(L,D) ⊆ ptR(L, S(L)).
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Boundedness and reasonableness

We say that (O : C → Frm, 2C) is reasonable if in O−1(2) the object 2C is both initial and
terminal. We now define two new spectrum functors. For a frame L we define ptI(L) as the
set of all morphisms f : L → 2 in FrmI . We topologize it via the usual Stone map. We define
ptT similarly. Recall the subspace embedding ξC : ptCC → ptOC . We call ξI and ξT the
co-restrictions to ptIOC and ptT OC , respectively.

Proposition

In a reasonable pointfree theory of T0 spaces (O : C → Frm, 2C), and L ∈ Frm:

1. If I ∈ O−1(L) is an initial object, ξI : ptC(I ) → ptI(L) is a homeomorphism.

2. If T ∈ O−1(L) is a terminal object, ξT : ptC(T ) → ptT (L) is a homeomorphism.
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Boundedness and reasonableness

Theorem

If (O : C → Frm, 2C) is bounded and reasonable, all C ∈ C there are subspace embeddings

ptT (O(C )) ↪→ ptC(C ) ↪→ ptI(O(C )).

Example

Raney and SZD are both bounded and reasonable.

• For Raney, FrmT is FrmE . The subspace inclusion above is ptD(L) ⊆ ptR(L,F) ⊆ pt(L).

• For SZD, FrmT is FrmB. The subspace inclusion above is ptD(L) ⊆ ptB(L,D) ⊆ pt(L).
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Duality for terminal objects

We say that (O : C → Frm, 2C) is spatially terminal if whenever T is terminal in its fiber so is
its spatialization ΩCptCT .

Example

Both Raney and SZD are terminally spatial.

We begin constructing the duality. We call TopT the essential image of the functor
ptT : Frmop → Top.

Proposition

If (O : C → Frm, 2C) is spatially terminal, then TopT is a full subcategory of Top.
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Duality for terminal objects

Lemma

Suppose that (O : C → Frm, 2C) is bounded, reasonable, and spatially terminal. For every
frame L, the map φT : L → ΩptT L defined as

ηT (a) = {f ∈ ptT (L) | f (a) = 1}

is in FrmT .

Lemma

Suppose that (O : C → Frm, 2C) is bounded, reasonable, and spatially terminal. For a space
X ∈ TopT , the characteristic map ΩX → 2 is in FrmT for every point x ∈ X. So, there is a
well-defined map σT : X → ptT ΩX.
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Duality for terminal objects

We have reached the main theorem.

Theorem

Suppose that (O : C → Frm, 2C) is bounded, reasonable, and spatially terminal. There is an
adjunction Ω : TopT ⇆ Frmop

T : ptT with Ω ⊣ ptT where all elements of TopT are fixpoints.
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Duality for terminal objects: the big picture

Top Cop

TopT Cop
T

TopT Frmop
T

ΩC

⊣

ptC

ΩC

⊣

ptC
IT ◦O(∼=)

Ω

⊣
ptT
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Duality for terminal objects: concrete examples

Top Raneyop

TopD RaneyopT

TopD Frmop
E

ΩR

⊣

ptR

ΩR

⊣

ptR
O(∼=)

Ω

⊣

ptD

Top SZDop

TopD SZDop
T

TopD Frmop
B

Sk

⊣

ptB

Sk
⊣

ptB
O(∼=)

Ω

⊣

ptT
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Duality for initial objects

We may want to look at the case where C has free objects. In this case, obtaining a similar
duality for initial objects is very simple.

Proposition

If O : C → Frm has a left adjoint F : Frm → C, then for every frame L its fiber has FL as its
initial object.

Example

In both Raney and SZD the forgetful functor to Frm has a left adjoint. For a frame L, the
initial object of the fiber in Raney is (L,So(L)), and the initial object of the fiber in SZD is
(L,S(L)).
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Duality for initial objects

The duality for initial objects, under relatively weak assumptions, collapses to the usual duality
for sober spaces.

Theorem

If O : C → Frm has a left adjoint, and is reasonable, then

1. FrmI = Frm;

2. ptI = pt;

3. TopI = Sob.
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Duality for initial objects: the big picture

Top Cop

Sob Cop
I

Sob Frmop

ΩC

⊣

ptC

ΩC

⊣

ptC
IT ◦O(∼=)

Ω

⊣

pt
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Duality for initial objects: concrete examples

Top Raneyop

Sob RaneyopT

Sob Frmop

ΩR

⊣

ptR

ΩR

⊣

ptR
O(∼=)

Ω

⊣

pt

Top SZDop

Sob SZDop
T

Sob Frmop

Sk

⊣

ptB

Sk
⊣

ptB
O(∼=)

Ω

⊣

pt
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Open questions

Then, for both Raney and SZD, even if FrmE and FrmB are different, the spectra induced by
them are both ptD . Equivalently, any terminal element T ∈ C of some fiber is always such
that ptC(T ) ∼= ptD(OT ). The TD axiom, and a duality for it, in both cases arises naturally
when restricting to terminal objects.

Is this the case for all pointfree theories of T0 spaces? If not, what are some natural
assumptions on a pointfree theory O : C → Frm of T0 spaces that imply this? Can we define a
useful such O : C → Frm where the terminal objects of the fibers are some other class of
spaces, e.g. the T1 spaces?

Another possible direction is to define a notion of morphism between pointfree theories of T0

spaces, and check how close Raney or SZD are to being universal in some sense in this
category.
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