

General pointfree theories of T_0 spaces

Anna Laura Suarez

University of the Western Cape

August 22, 2025

Joint work with R. Prezado

Table of contents

1. Background

- Frames and spaces
- Sublocales

2. Concrete theories of T_0 spaces

- Raney extensions
- Strictly zero-dimensional biframes

3. General theories of T_0 spaces

- Main definition
- Initial and terminal objects of fibers
- Duality for terminal objects
- Duality for initial objects

The duality

The classical pointfree versions of topological spaces are *frames*. A frame is a complete lattice L where the distributivity law

$$(\bigvee_i x_i) \wedge y = \bigvee_i (x_i \wedge y)$$

holds. Frames form the category **Frm** when equipped with maps which preserve arbitrary joins and finite meets.

The duality

The classical pointfree versions of topological spaces are *frames*. A frame is a complete lattice L where the distributivity law

$$(\bigvee_i x_i) \wedge y = \bigvee_i (x_i \wedge y)$$

holds. Frames form the category **Frm** when equipped with maps which preserve arbitrary joins and finite meets. We have an adjunction

$$\begin{array}{ccc} \mathbf{Frm}^{op} & \begin{array}{c} \xrightarrow{\text{pt}} \\ \xleftarrow{\top} \end{array} & \mathbf{Top} \\ & \xleftarrow{\Omega} & \end{array}$$

Sublocales

Isomorphism classes of frame surjections are in bijective correspondence with subsets of L certain subsets of L called *sublocales*.

Sublocales

Isomorphism classes of frame surjections are in bijective correspondence with subsets of L certain subsets of L called *sublocales*. These are subsets $S \subseteq L$ such that:

- S is closed under all meets;
- If $s \in S$ and $x \in L$ then $x \rightarrow s \in S$.

Sublocales

Isomorphism classes of frame surjections are in bijective correspondence with subsets of L certain subsets of L called *sublocales*. These are subsets $S \subseteq L$ such that:

- S is closed under all meets;
- If $s \in S$ and $x \in L$ then $x \rightarrow s \in S$.

We will mention some important facts about sublocales.

Theorem

The ordered collection $S(L)$ of sublocales of a frame L is a coframe. Meets are set-theoretical intersections.

Open and closed sublocales

Every element $a \in L$ determines an *open* sublocale $\mathfrak{o}(a) \subseteq L$ and a *closed* one $\mathfrak{c}(a) \subseteq L$. We will only

- The collection $S_o(L) \subseteq S(L)$ of intersections of closed sublocales is a subcoframe of $S(L)$.
- The collection $S_c(L) \subseteq S(L)$ of joins of closed sublocales is a subframe of $S(L)$.
- The collection $S_b(L) \subseteq S(L)$ of joins of complemented sublocales is a subcolocale, in particular it is the Booleanization of $S(L)$.

Raney extensions

We now introduce *Raney extensions*. Today we give a definition equivalent to the original one. A *Raney extension* is a pair (L, \mathcal{F}) such that L is a frame and $\mathcal{F} \subseteq S_o(L)$ is a subcolocale. A morphism $f : (L, \mathcal{F}) \rightarrow (M, \mathcal{G})$ between Raney extensions is a frame map $f : L \rightarrow M$ compatible with \mathcal{F} and \mathcal{G} in a precise sense beyond the scope of this talk.

Raney extensions

We now introduce *Raney extensions*. Today we give a definition equivalent to the original one. A *Raney extension* is a pair (L, \mathcal{F}) such that L is a frame and $\mathcal{F} \subseteq S_o(L)$ is a subcolocale. A morphism $f : (L, \mathcal{F}) \rightarrow (M, \mathcal{G})$ between Raney extensions is a frame map $f : L \rightarrow M$ compatible with \mathcal{F} and \mathcal{G} in a precise sense beyond the scope of this talk.

Example

- For a topological space, let $\mathcal{U}(X)$ be the ordered collection of intersections of open sets, called the *saturated* sets. The pair $(\Omega(X), \mathcal{U}(X))$ is a Raney extension.
- The pair $(L, S_o(L))$ is obviously a Raney extension for every frame L .
- The pair $(L, S_c(L)^{op})$ is a Raney extension for every frame L .

Raney extensions

We regard Raney extensions as pointfree T_0 spaces in light of the following result.

Theorem

There is a dual adjunction $\Omega_R : \mathbf{Top} \leftrightarrows \mathbf{Raney}^{op} : pt_R$, extending $\mathbf{Top} \leftrightarrows \mathbf{Frm}^{op} : pt$, such that the fixpoints in \mathbf{Top} are the T_0 spaces.

Raney extensions

The Raney extensions $(L, S_o(L))$ and $(L, S_c(L)^{op})$ are especially significant.

Theorem

For every Raney extension (L, C) there are surjections

$$(L, S_o(L)) \xrightarrow{\Sigma_{(L,C)}} (L, C) \xrightarrow{\tau_{(L,C)}} (L, S_c(L)^{op}).$$

Up to homeomorphism, the dualizations of these surjections are subspace inclusions:

$$\text{pt}_D(L) \xrightarrow{\text{pt}_R(\tau)} \text{pt}_R(L, C) \xrightarrow{\text{pt}_R(\Sigma)} \text{pt}(L).$$

Raney extensions

The Raney extensions $(L, S_o(L))$ and $(L, S_c(L)^{op})$ are especially significant.

Theorem

For every Raney extension (L, C) there are surjections

$$(L, S_o(L)) \xrightarrow{\Sigma_{(L,C)}} (L, C) \xrightarrow{\tau_{(L,C)}} (L, S_c(L)^{op}).$$

Up to homeomorphism, the dualizations of these surjections are subspace inclusions:

$$\text{pt}_D(L) \xrightarrow{\text{pt}_R(\tau)} \text{pt}_R(L, C) \xrightarrow{\text{pt}_R(\Sigma)} \text{pt}(L).$$

In fact, the assignment $L \mapsto (L, S_o(L))$ determines a functor $S_o : \mathbf{Frm} \rightarrow \mathbf{Raney}$. This is left adjoint to the forgetful functor $\pi_1 : \mathbf{Raney} \rightarrow \mathbf{Frm}$. The assignment $L \mapsto (L, S_c(L)^{op})$ is not functorial. We call $\mathbf{Frm}_{\mathcal{E}}$ the wide subcategory of \mathbf{Frm} whose morphisms are the exact maps, the ones who do lift.

Strictly zero-dimensional biframes

Another approach is that of strictly zero-dimensional biframes. These were studied in detail by Manuell in *Strictly zero-dimensional biframes and a characterization of congruence frames* (2018). A *strictly zero-dimensional biframe* may be identified with a pair (L, \mathcal{D}) where L is a frame, and \mathcal{D} is a dense subcolocale of $S(L)$. A morphism $f : (L, \mathcal{D}) \rightarrow (M, \mathcal{E})$ between strictly zero-dimensional biframes is a frame map $f : L \rightarrow M$ compatible with \mathcal{D} and \mathcal{E} .

Example

- For a space X , the pair $(\Omega(X), \text{Sk}(X))$, where $\text{Sk}(X)$ are the opens in the Skula topology, is a strictly zero-dimensional biframe.
- The pair $(L, S(L))$ is obviously a strictly zero-dimensional biframe for every frame L .
- The pair $(L, S_b(L))$ is a strictly zero-dimensional biframe for every frame L .

Strictly zero-dimensional biframes

We regard strictly zero-dimensional biframes as pointfree T_0 spaces in light of the following result.

Theorem

There is a dual adjunction $\text{Sk} : \mathbf{Top} \leftrightarrows \mathbf{SZD}^{op} : \text{pt}_B$, extending $\mathbf{Top} \leftrightarrows \mathbf{Frm}^{op} : \text{pt}$, such that the fixpoints in \mathbf{Top} are the T_0 spaces.

Strictly zero-dimensional biframes

We regard strictly zero-dimensional biframes as pointfree T_0 spaces in light of the following result.

Theorem

There is a dual adjunction $\text{Sk} : \mathbf{Top} \leftrightarrows \mathbf{SZD}^{op} : \text{pt}_B$, extending $\mathbf{Top} \leftrightarrows \mathbf{Frm}^{op} : \text{pt}$, such that the fixpoints in \mathbf{Top} are the T_0 spaces.

The functor Sk sends a space X to the strictly zero-dimensional biframe $(\Omega(X), \text{Sk}(X))$

Strictly zero-dimensional biframes

For a frame L , we have the strictly zero-dimensional biframes $(L, S(L))$ and $(L, S_b(L))$. The following results are gathered from Manuell, 2018.

Theorem

For every strictly zero-dimensional biframe (L, \mathcal{D}) there are surjections

$$(L, S(L)) \xrightarrow{\Delta_{(L, \mathcal{C})}} (L, \mathcal{D}) \xrightarrow{\iota_{(L, \mathcal{C})}} (L, S_b(L)).$$

Up to homeomorphism, the dualizations of these surjections are subspace inclusions:

$$\text{pt}_D(L) \xrightarrow{\text{pt}_B(\iota)} \text{pt}_B(L, \mathcal{D}) \xrightarrow{\text{pt}_B(\Delta)} \text{pt}(L).$$

Strictly zero-dimensional biframes

For a frame L , we have the strictly zero-dimensional biframes $(L, S(L))$ and $(L, S_b(L))$. The following results are gathered from Manuell, 2018.

Theorem

For every strictly zero-dimensional biframe (L, \mathcal{D}) there are surjections

$$(L, S(L)) \xrightarrow{\Delta_{(L, \mathcal{C})}} (L, \mathcal{D}) \xrightarrow{\iota_{(L, \mathcal{C})}} (L, S_b(L)).$$

Up to homeomorphism, the dualizations of these surjections are subspace inclusions:

$$\text{pt}_D(L) \xrightarrow{\text{pt}_B(\iota)} \text{pt}_B(L, \mathcal{D}) \xrightarrow{\text{pt}_B(\Delta)} \text{pt}(L).$$

Once again, the assignment $L \mapsto (L, S(L))$ is functorial and is left adjoint to the forgetful functor to **Frm**. But the assignment $L \mapsto (L, S_b(L))$ is not. We call **Frm** $_{\mathcal{B}}$ the subcategory of **Frm** whose morphisms lift to this.

Dualizing objects

We follow definitions from Tholen and Porst, *Concrete dualities*, 1991. Suppose there are categories \mathcal{A} and \mathcal{B} with underlying set functors $U : \mathcal{A} \rightarrow \mathbf{Set}$ and $V : \mathcal{B} \rightarrow \mathbf{Set}$.

Dualizing objects

We follow definitions from Tholen and Porst, *Concrete dualities*, 1991. Suppose there are categories \mathcal{A} and \mathcal{B} with underlying set functors $U : \mathcal{A} \rightarrow \mathbf{Set}$ and $V : \mathcal{B} \rightarrow \mathbf{Set}$. Suppose, also that there are $A \in \mathcal{A}$ and $B \in \mathcal{B}$ such that $U =$

If this holds, for $X \in \mathcal{A}$, and $x \in UX$, there is an evaluation map

$$\varepsilon_{(X,x)} : \mathcal{A}(X, A) \rightarrow U(A),$$

defined as $\varepsilon_{(X,x)}(s) = Us(x)$ for all $s \in \mathcal{A}(X, A)$. Similarly, there is another evaluation map

$$\eta_{(Y,y)} : \mathcal{B}(Y, B) \rightarrow VB,$$

defined as $\eta_{(Y,y)}(t) = Vt(y)$.

Dualizing objects

A triple (A, B, τ) with $A \in \mathcal{A}$, $B \in \mathcal{B}$, and $\tau : UA \cong VB$ a bijection with inverse σ , is called a *dualizing object* if the following two properties hold.

1. For all $X \in \mathcal{A}$, the family $\tau\varepsilon_{(X,a)} : \mathcal{A}(X, A) \rightarrow VB$, for $a \in UA$, admits an initial lifting $\tau\varepsilon_{(A,a)} : TA \rightarrow B$.
2. For all $Y \in \mathcal{B}$, the family $\sigma\eta_{(Y,b)} : \mathcal{B}(Y, B) \rightarrow UA$, for $b \in VY$, admits an initial lifting $\sigma\eta_{(Y,b)} : SY \rightarrow A$.

Dualizing objects

A triple (A, B, τ) with $A \in \mathcal{A}$, $B \in \mathcal{B}$, and $\tau : UA \cong VB$ a bijection with inverse σ , is called a *dualizing object* if the following two properties hold.

1. For all $X \in \mathcal{A}$, the family $\tau\varepsilon_{(X,a)} : \mathcal{A}(X, A) \rightarrow VB$, for $a \in UA$, admits an initial lifting $\tau\varepsilon_{(A,a)} : TA \rightarrow B$.
2. For all $Y \in \mathcal{B}$, the family $\sigma\eta_{(Y,b)} : \mathcal{B}(Y, B) \rightarrow UA$, for $b \in VY$, admits an initial lifting $\sigma\eta_{(Y,b)} : SY \rightarrow A$.

Theorem

For every dualizing object (A, B, τ) , there is a dual adjunction $T : \mathcal{A} \leftrightarrows \mathcal{B} : S$ strictly represented by A and B .

Dualizing objects

A triple (A, B, τ) with $A \in \mathcal{A}$, $B \in \mathcal{B}$, and $\tau : UA \cong VB$ a bijection with inverse σ , is called a *dualizing object* if the following two properties hold.

1. For all $X \in \mathcal{A}$, the family $\tau\varepsilon_{(X,a)} : \mathcal{A}(X, A) \rightarrow VB$, for $a \in UA$, admits an initial lifting $\tau\varepsilon_{(A,a)} : TA \rightarrow B$.
2. For all $Y \in \mathcal{B}$, the family $\sigma\eta_{(Y,b)} : \mathcal{B}(Y, B) \rightarrow UA$, for $b \in VY$, admits an initial lifting $\sigma\eta_{(Y,b)} : SY \rightarrow A$.

Theorem

For every dualizing object (A, B, τ) , there is a dual adjunction $T : \mathcal{A} \leftrightarrows \mathcal{B} : S$ strictly represented by A and B . In particular:

1. $US = \mathcal{B}(-, B)$ and $VT = \mathcal{A}(-, A)$.
2. For $X \in \mathcal{A}$ and $x \in UX$, for each $x \in UX$ the unit is defined as $x \mapsto \varepsilon_{(X,x)}$, where the latter is the initial lifting $\varepsilon_{(X,x)} : TX \rightarrow B$.

General theories of T_0 spaces

A *pointfree category of T_0 spaces* consists of

- A functor $\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}$ from some category \mathcal{C} ;
- An object $2_{\mathcal{C}} \in \mathcal{C}$;

General theories of T_0 spaces

A *pointfree category of T_0 spaces* consists of

- A functor $\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}$ from some category \mathcal{C} ;
- An object $2_{\mathcal{C}} \in \mathcal{C}$;

such that:

- \mathcal{O} is faithful and essentially surjective;
- The pair $(2_{\mathcal{C}}, \mathbb{S})$ is a dualizing object;
- The fixpoints in **Top** of the resulting adjunction $(-, \mathbb{S}) : \mathbf{Top} \leftrightarrows \mathcal{C} : (-, 2_{\mathcal{C}})$ are the T_0 spaces.

General theories of T_0 spaces

We call $\Omega_{\mathcal{C}}$: and $\text{pt}_{\mathcal{C}}$: the two functors arising from the pair $(2_{\mathcal{C}}, \mathbb{S})$. We note that the category \mathcal{C} is understood to have $V \circ \mathcal{O}$ as the underlying set functor, where $V : \mathbf{Frm} \rightarrow \mathbf{Set}$ is that functor for frames. Then $\mathbf{Top}(X, \mathbb{S})$ is just the underlying set of the frame $\mathcal{O}(\Omega_{\mathcal{C}}(X))$.

Lemma

If $(\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}, 2_{\mathcal{C}})$ is a pointfree category of T_0 spaces, the functors $\mathcal{O} \circ \Omega_{\mathcal{C}}$ and Ω are naturally isomorphic.

Proof.

(Sketch). We prove that the two underlying sets are the same. Both $\Omega_{\mathcal{C}} \dashv \text{pt}_{\mathcal{C}}$ and $\Omega \dashv \text{pt}$ have \mathbb{S} as a dualizing object, and so $V\mathcal{O}\Omega_{\mathcal{C}}(X) \cong \mathbf{Top}(X, \mathbb{S}) \cong V\Omega X$. □

We call $\zeta : \mathcal{O}\Omega_{\mathcal{C}} \rightarrow \Omega$ the natural isomorphism given by the lemma above.

General theories of T_0 spaces

Proposition

If $(\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}, 2_{\mathcal{C}})$ is a pointfree theory of T_0 spaces there is a diagram as follows in which the right adjoints commute up to natural isomorphism.

$$\begin{array}{ccc} \mathcal{C} & \xrightarrow{\text{pt}_{\mathcal{C}}} & \mathbf{Top}^{\text{op}} \\ \downarrow \mathcal{O} & \begin{array}{c} \perp \\ \Omega_{\mathcal{C}} \end{array} & \parallel \\ \mathbf{Frm} & \xrightarrow{\text{pt}} & \mathbf{Top}^{\text{op}} \end{array}$$

In other words, \mathcal{O} determines a lax map of adjunctions.

General theories of T_0 spaces

Let η and $\eta^{\mathcal{C}}$ be the units in **Frm** and in \mathcal{C} , respectively. Let σ , and $\sigma^{\mathcal{C}}$ be the corresponding counits. Recall that by our main definition we know the following.

Fact

The counit $\sigma_X^{\mathcal{C}}$ is a homeomorphism for every $X \in \mathbf{Top}$.

General theories of T_0 spaces

Let η and $\eta^{\mathcal{C}}$ be the units in **Frm** and in \mathcal{C} , respectively. Let σ , and $\sigma^{\mathcal{C}}$ be the corresponding counits. Recall that by our main definition we know the following.

Fact

The counit $\sigma_X^{\mathcal{C}}$ is a homeomorphism for every $X \in \mathbf{Top}$.

We can also prove an important fact about the unit $\eta_{\mathcal{C}}$.

Lemma

Let \mathcal{C} be a category of T_0 spaces. For $C \in \mathcal{C}$, $\zeta_{\text{pt}_{\mathcal{C}} C} \circ \mathcal{O}\eta_C : \mathcal{O}C \rightarrow \Omega \text{pt}_{\mathcal{C}} C$ satisfies

$$\mathcal{O}\eta_C(a) = \{f \in \text{pt}_{\mathcal{C}}(C) \mid \mathcal{O}f(a) = 1\}.$$

In particular, this is a frame surjection.

General theories of T_0 spaces

Mate theory guarantees the existence of a natural transformation $\xi : \text{pt}_{\mathcal{C}} \rightarrow \text{pt} \circ \mathcal{O}$. This is the composition:

$$\text{pt}_{\mathcal{C}} C \xrightarrow{\sigma_{\text{pt}_{\mathcal{C}} C}} \text{pt} \Omega \text{pt}_{\mathcal{C}} C \xrightarrow{\text{pt} \zeta_{\text{pt}_{\mathcal{C}} C}} \text{pt} \mathcal{O} \Omega_{\mathcal{C}} \text{pt}_{\mathcal{C}} C \xrightarrow{\text{pt} \mathcal{O}(\eta_{\mathcal{C}}^{\mathcal{C}})} \text{pt} \mathcal{O} C.$$

General theories of T_0 spaces

Mate theory guarantees the existence of a natural transformation $\xi : \text{pt}_{\mathcal{C}} \rightarrow \text{pt} \circ \mathcal{O}$. This is the composition:

$$\text{pt}_{\mathcal{C}} C \xrightarrow{\sigma_{\text{pt}_{\mathcal{C}} C}} \text{pt} \Omega \text{pt}_{\mathcal{C}} C \xrightarrow{\text{pt} \zeta_{\text{pt}_{\mathcal{C}} C}} \text{pt} \mathcal{O} \Omega_{\mathcal{C}} \text{pt}_{\mathcal{C}} C \xrightarrow{\text{pt} \mathcal{O}(\eta_{\mathcal{C}}^{\mathcal{C}})} \text{pt} \mathcal{O} C.$$

Proposition

The map $\xi_{\mathcal{C}} : \text{pt}_{\mathcal{C}}(C) \rightarrow \text{pt}(\mathcal{O}(C))$ is a subspace embedding for all $C \in \mathcal{C}$.

Proof.

We look at the diagram above. The soberification $\sigma_{\text{pt}_{\mathcal{C}} C}$ is a subspace embedding as $\text{pt}_{\mathcal{C}} C$ is a T_0 space. The second morphism is an isomorphism, as $\zeta_{\text{pt}_{\mathcal{C}} C}$ is. The third is a subspace embedding, as we have shown that $\mathcal{O}(\eta_{\mathcal{C}}^{\mathcal{C}})$ is a frame surjection. □

Initial and terminal objects of fibers

For a pointfree theory of T_0 spaces $(\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}, 2_{\mathcal{C}})$, we define the *fiber* $\mathcal{O}^{-1}(L)$ of a frame L to be the category:

- Whose objects are pairs (C, θ) where $C \in \mathcal{C}$ and $\theta : \mathcal{O}C \cong L$ is an isomorphism;
- Whose morphisms $f : (C_1, \theta_1) \rightarrow (C_2, \theta_2)$ are maps $f : C_1 \rightarrow C_2$ in \mathcal{C} such that the following commutes in \mathbf{Frm} .

$$\begin{array}{ccc} \mathcal{O}(C_1) & \xrightarrow{\mathcal{O}f} & \mathcal{O}(C_2) \\ & \searrow \theta_1 & \swarrow \theta_2 \\ & L & \end{array}$$

Initial and terminal objects of fibers

We call \mathcal{C}_I be the full subcategory of \mathcal{C} determined by the initial objects of the fibers, and \mathcal{C}_T that of the terminal ones. Consider the composite functor below, where $I_{\mathcal{I}}$ is subcategory inclusion.

$$\mathcal{C}_I \xleftarrow{I_{\mathcal{I}}} \mathcal{C} \xrightarrow{\mathcal{O}} \mathbf{Frm}$$

Initial and terminal objects of fibers

We call \mathcal{C}_I be the full subcategory of \mathcal{C} determined by the initial objects of the fibers, and \mathcal{C}_T that of the terminal ones. Consider the composite functor below, where $I_{\mathcal{I}}$ is subcategory inclusion.

$$\mathcal{C}_{\mathcal{I}} \xrightarrow{I_{\mathcal{I}}} \mathcal{C} \xrightarrow{\mathcal{O}} \mathbf{Frm}$$

The functor is faithful. It is essentially surjective iff every frame has an initial object in its fiber. In general, this will not be full. We call $\mathbf{Frm}_{\mathcal{I}}$ the essential image of this functor.

Initial and terminal objects of fibers

We call \mathcal{C}_I be the full subcategory of \mathcal{C} determined by the initial objects of the fibers, and \mathcal{C}_T that of the terminal ones. Consider the composite functor below, where $I_{\mathcal{I}}$ is subcategory inclusion.

$$\mathcal{C}_I \xrightarrow{I_{\mathcal{I}}} \mathcal{C} \xrightarrow{\mathcal{O}} \mathbf{Frm}$$

The functor is faithful. It is essentially surjective iff every frame has an initial object in its fiber. In general, this will not be full. We call \mathbf{Frm}_I the essential image of this functor. Similarly, we call \mathbf{Frm}_T the image of

$$\mathcal{C}_T \xrightarrow{I_{\mathcal{T}}} \mathcal{C} \xrightarrow{\mathcal{O}} \mathbf{Frm},$$

the analogous construction for terminal objects.

Initial and terminal objects of fibers

We say that a pointfree theory $(\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}, 2_{\mathcal{C}})$ of T_0 spaces is *bounded* if every fiber has both an initial and a terminal object.

Example

SZD and **Raney** are both bounded. As we have seen:

- For a Raney extension (L, \mathcal{F}) the initial object of its fiber is $(L, S_o(L))$, and the terminal one is $(L, S_c(L)^{op})$.
- For a strictly zero-dimensional biframe (L, \mathcal{D}) the initial object of its fiber is $(L, S(L))$, and the terminal one is $(L, S_b(L))$.

Initial and terminal objects of fibers

We say that a pointfree theory $(\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}, 2_{\mathcal{C}})$ of T_0 spaces is *bounded* if every fiber has both an initial and a terminal object.

Example

SZD and **Raney** are both bounded. As we have seen:

- For a Raney extension (L, \mathcal{F}) the initial object of its fiber is $(L, S_o(L))$, and the terminal one is $(L, S_c(L)^{op})$.
- For a strictly zero-dimensional biframe (L, \mathcal{D}) the initial object of its fiber is $(L, S(L))$, and the terminal one is $(L, S_b(L))$.

Proposition

If $C \in \mathcal{C}$ is such that its fiber $\mathcal{O}^{-1}(\mathcal{O}(C))$ has both an initial object I and a terminal object T , there are subspace embeddings

$$\text{pt}_{\mathcal{C}}(T) \subseteq \text{pt}_{\mathcal{C}}(C) \subseteq \text{pt}_{\mathcal{C}}(I).$$

Initial and terminal objects of fibers

We say that a pointfree theory $(\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}, 2_{\mathcal{C}})$ of T_0 spaces is *bounded* if every fiber has both an initial and a terminal object.

Example

SZD and **Raney** are both bounded. As we have seen:

- For a Raney extension (L, \mathcal{F}) the initial object of its fiber is $(L, S_o(L))$, and the terminal one is $(L, S_c(L)^{op})$.
- For a strictly zero-dimensional biframe (L, \mathcal{D}) the initial object of its fiber is $(L, S(L))$, and the terminal one is $(L, S_b(L))$.

Proposition

If $C \in \mathcal{C}$ is such that its fiber $\mathcal{O}^{-1}(\mathcal{O}(C))$ has both an initial object I and a terminal object T , there are subspace embeddings

$$\text{pt}_{\mathcal{C}}(T) \subseteq \text{pt}_{\mathcal{C}}(C) \subseteq \text{pt}_{\mathcal{C}}(I).$$

Boundedness and reasonableness

We say that $(\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}, 2_{\mathcal{C}})$ is *reasonable* if in $\mathcal{O}^{-1}(2)$ the object $2_{\mathcal{C}}$ is both initial and terminal. We now define two new spectrum functors. For a frame L we define $\text{pt}_{\mathcal{I}}(L)$ as the set of all morphisms $f : L \rightarrow 2$ in $\mathbf{Frm}_{\mathcal{I}}$. We topologize it via the usual Stone map. We define $\text{pt}_{\mathcal{T}}$ similarly. Recall the subspace embedding $\xi_{\mathcal{C}} : \text{pt}_{\mathcal{C}} C \rightarrow \text{pt} \mathcal{O} C$. We call ξ^I and ξ^T the co-restrictions to $\text{pt}_{\mathcal{I}} \mathcal{O} C$ and $\text{pt}_{\mathcal{T}} \mathcal{O} C$, respectively.

Boundedness and reasonableness

We say that $(\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}, 2_{\mathcal{C}})$ is *reasonable* if in $\mathcal{O}^{-1}(2)$ the object $2_{\mathcal{C}}$ is both initial and terminal. We now define two new spectrum functors. For a frame L we define $\text{pt}_{\mathcal{I}}(L)$ as the set of all morphisms $f : L \rightarrow 2$ in $\mathbf{Frm}_{\mathcal{I}}$. We topologize it via the usual Stone map. We define $\text{pt}_{\mathcal{T}}$ similarly. Recall the subspace embedding $\xi_{\mathcal{C}} : \text{pt}_{\mathcal{C}} C \rightarrow \text{pt} \mathcal{O} C$. We call ξ^I and ξ^T the co-restrictions to $\text{pt}_{\mathcal{I}} \mathcal{O} C$ and $\text{pt}_{\mathcal{T}} \mathcal{O} C$, respectively.

Proposition

In a reasonable pointfree theory of T_0 spaces $(\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}, 2_{\mathcal{C}})$, and $L \in \mathbf{Frm}$:

1. *If $I \in \mathcal{O}^{-1}(L)$ is an initial object, $\xi^I : \text{pt}_{\mathcal{C}}(I) \rightarrow \text{pt}_{\mathcal{I}}(L)$ is a homeomorphism.*
2. *If $T \in \mathcal{O}^{-1}(L)$ is a terminal object, $\xi^T : \text{pt}_{\mathcal{C}}(T) \rightarrow \text{pt}_{\mathcal{T}}(L)$ is a homeomorphism.*

Boundedness and reasonableness

Theorem

If $(\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}, 2_{\mathcal{C}})$ is bounded and reasonable, all $C \in \mathcal{C}$ there are subspace embeddings

$$\text{pt}_{\mathcal{T}}(\mathcal{O}(C)) \hookrightarrow \text{pt}_{\mathcal{C}}(C) \hookrightarrow \text{pt}_{\mathcal{I}}(\mathcal{O}(C)).$$

Boundedness and reasonableness

Theorem

If $(\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}, 2_{\mathcal{C}})$ is bounded and reasonable, all $C \in \mathcal{C}$ there are subspace embeddings

$$\text{pt}_{\mathcal{T}}(\mathcal{O}(C)) \hookrightarrow \text{pt}_{\mathcal{C}}(C) \hookrightarrow \text{pt}_{\mathcal{I}}(\mathcal{O}(C)).$$

Example

Raney and **SZD** are both bounded and reasonable.

- For **Raney**, $\mathbf{Frm}_{\mathcal{T}}$ is $\mathbf{Frm}_{\mathcal{E}}$. The subspace inclusion above is $\text{pt}_D(L) \subseteq \text{pt}_R(L, \mathcal{F}) \subseteq \text{pt}(L)$.

Boundedness and reasonableness

Theorem

If $(\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}, 2_{\mathcal{C}})$ is bounded and reasonable, all $C \in \mathcal{C}$ there are subspace embeddings

$$\text{pt}_{\mathcal{T}}(\mathcal{O}(C)) \hookrightarrow \text{pt}_{\mathcal{C}}(C) \hookrightarrow \text{pt}_{\mathcal{I}}(\mathcal{O}(C)).$$

Example

Raney and **SZD** are both bounded and reasonable.

- For **Raney**, $\mathbf{Frm}_{\mathcal{T}}$ is $\mathbf{Frm}_{\mathcal{E}}$. The subspace inclusion above is $\text{pt}_D(L) \subseteq \text{pt}_R(L, \mathcal{F}) \subseteq \text{pt}(L)$.
- For **SZD**, $\mathbf{Frm}_{\mathcal{T}}$ is $\mathbf{Frm}_{\mathcal{B}}$. The subspace inclusion above is $\text{pt}_D(L) \subseteq \text{pt}_B(L, \mathcal{D}) \subseteq \text{pt}(L)$.

Duality for terminal objects

We say that $(\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}, 2_{\mathcal{C}})$ is *spatially terminal* if whenever T is terminal in its fiber so is its spatialization $\Omega_{\mathcal{C}\text{pt}_{\mathcal{C}}} T$.

Example

Both **Raney** and **SZD** are terminally spatial.

We begin constructing the duality. We call $\mathbf{Top}_{\mathcal{T}}$ the essential image of the functor $\text{pt}_{\mathcal{T}} : \mathbf{Frm}^{op} \rightarrow \mathbf{Top}$.

Proposition

If $(\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}, 2_{\mathcal{C}})$ is spatially terminal, then $\mathbf{Top}_{\mathcal{T}}$ is a full subcategory of \mathbf{Top} .

Duality for terminal objects

Lemma

Suppose that $(\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}, 2_{\mathcal{C}})$ is bounded, reasonable, and spatially terminal. For every frame L , the map $\varphi^T : L \rightarrow \Omega \text{pt}_{\mathcal{T}} L$ defined as

$$\eta^T(a) = \{f \in \text{pt}_{\mathcal{T}}(L) \mid f(a) = 1\}$$

is in $\mathbf{Frm}_{\mathcal{T}}$.

Duality for terminal objects

Lemma

Suppose that $(\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}, 2_{\mathcal{C}})$ is bounded, reasonable, and spatially terminal. For every frame L , the map $\varphi^T : L \rightarrow \Omega \text{pt}_{\mathcal{T}} L$ defined as

$$\eta^T(a) = \{f \in \text{pt}_{\mathcal{T}}(L) \mid f(a) = 1\}$$

is in $\mathbf{Frm}_{\mathcal{T}}$.

Lemma

Suppose that $(\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}, 2_{\mathcal{C}})$ is bounded, reasonable, and spatially terminal. For a space $X \in \mathbf{Top}_{\mathcal{T}}$, the characteristic map $\Omega X \rightarrow 2$ is in $\mathbf{Frm}_{\mathcal{T}}$ for every point $x \in X$. So, there is a well-defined map $\sigma^T : X \rightarrow \text{pt}_{\mathcal{T}} \Omega X$.

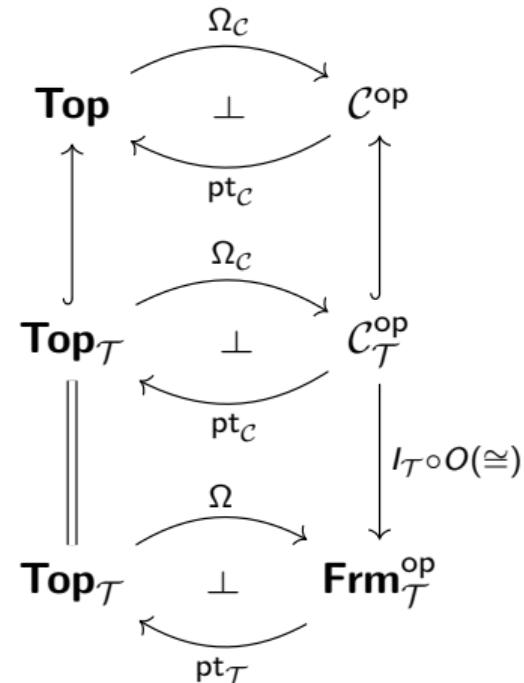
Duality for terminal objects

We have reached the main theorem.

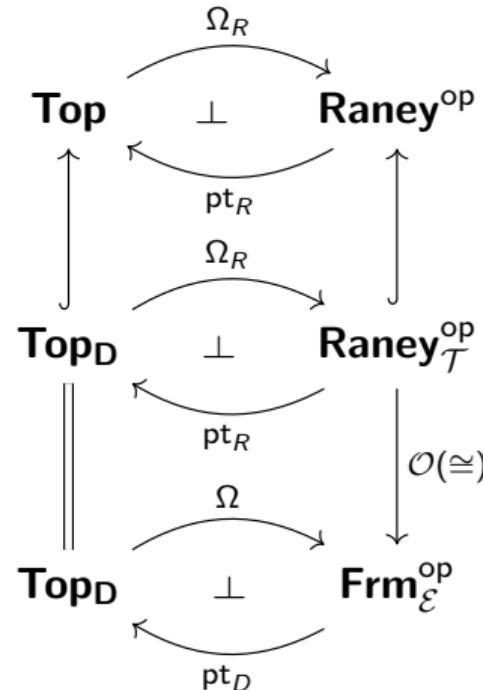
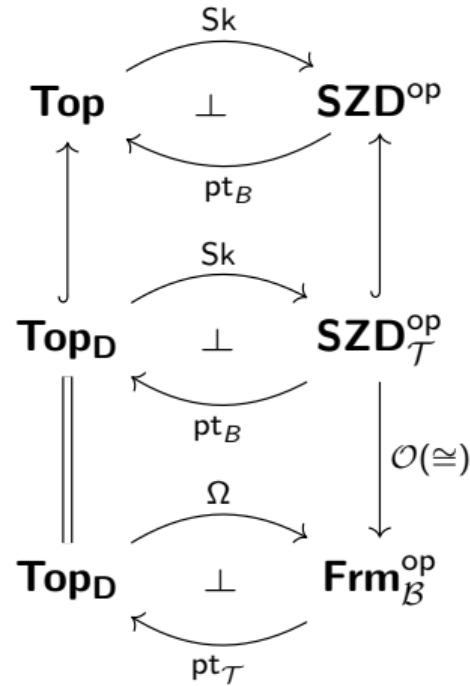
Theorem

Suppose that $(\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}, 2_{\mathcal{C}})$ is bounded, reasonable, and spatially terminal. There is an adjunction $\Omega : \mathbf{Top}_{\mathcal{T}} \leftrightarrows \mathbf{Frm}_{\mathcal{T}}^{op} : pt_{\mathcal{T}}$ with $\Omega \dashv pt_{\mathcal{T}}$ where all elements of $\mathbf{Top}_{\mathcal{T}}$ are fixpoints.

Duality for terminal objects: the big picture



Duality for terminal objects: concrete examples



Duality for initial objects

We may want to look at the case where \mathcal{C} has free objects. In this case, obtaining a similar duality for initial objects is very simple.

Proposition

If $\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}$ has a left adjoint $\mathcal{F} : \mathbf{Frm} \rightarrow \mathcal{C}$, then for every frame L its fiber has $\mathcal{F}L$ as its initial object.

Duality for initial objects

We may want to look at the case where \mathcal{C} has free objects. In this case, obtaining a similar duality for initial objects is very simple.

Proposition

If $\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}$ has a left adjoint $\mathcal{F} : \mathbf{Frm} \rightarrow \mathcal{C}$, then for every frame L its fiber has $\mathcal{F}L$ as its initial object.

Example

In both **Raney** and **SZD** the forgetful functor to **Frm** has a left adjoint. For a frame L , the initial object of the fiber in **Raney** is $(L, S_o(L))$, and the initial object of the fiber in **SZD** is $(L, S(L))$.

Duality for initial objects

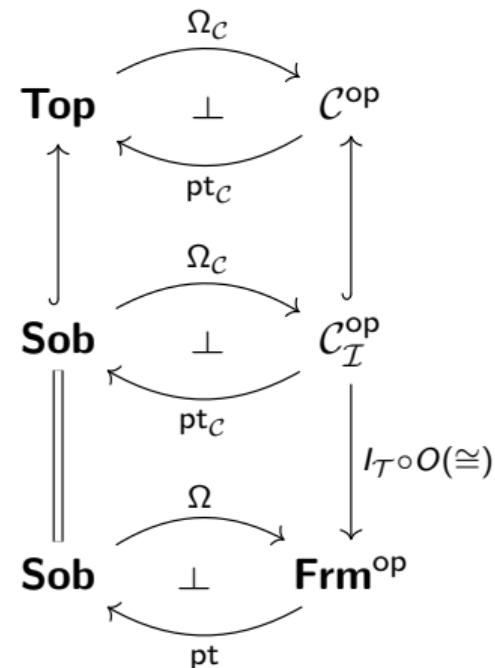
The duality for initial objects, under relatively weak assumptions, collapses to the usual duality for sober spaces.

Theorem

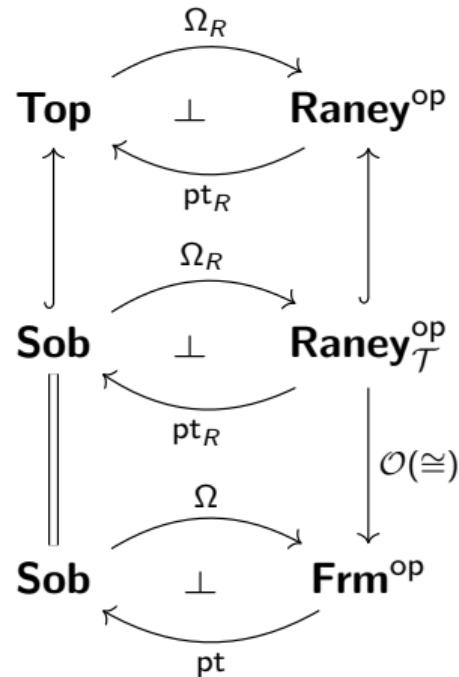
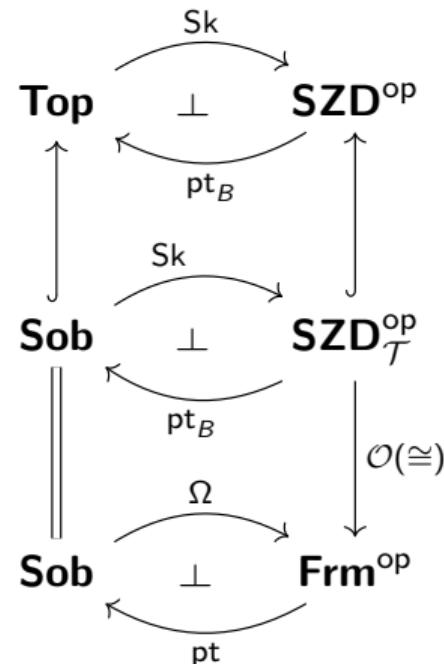
If $\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}$ has a left adjoint, and is reasonable, then

1. $\mathbf{Frm}_{\mathcal{I}} = \mathbf{Frm}$;
2. $\text{pt}_{\mathcal{I}} = \text{pt}$;
3. $\mathbf{Top}_{\mathcal{I}} = \mathbf{Sob}$.

Duality for initial objects: the big picture



Duality for initial objects: concrete examples



Open questions

Then, for both **Raney** and **SZD**, even if $\mathbf{Frm}_{\mathcal{E}}$ and $\mathbf{Frm}_{\mathcal{B}}$ are different, the spectra induced by them are both pt_D . Equivalently, any terminal element $T \in \mathcal{C}$ of some fiber is always such that $\text{pt}_{\mathcal{C}}(T) \cong \text{pt}_D(\mathcal{O}T)$. The T_D axiom, and a duality for it, in both cases arises naturally when restricting to terminal objects.

Open questions

Then, for both **Raney** and **SZD**, even if $\mathbf{Frm}_{\mathcal{E}}$ and $\mathbf{Frm}_{\mathcal{B}}$ are different, the spectra induced by them are both pt_D . Equivalently, any terminal element $T \in \mathcal{C}$ of some fiber is always such that $\text{pt}_{\mathcal{C}}(T) \cong \text{pt}_D(\mathcal{O}T)$. The T_D axiom, and a duality for it, in both cases arises naturally when restricting to terminal objects.

Is this the case for all pointfree theories of T_0 spaces? If not, what are some natural assumptions on a pointfree theory $\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}$ of T_0 spaces that imply this? Can we define a useful such $\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}$ where the terminal objects of the fibers are some other class of spaces, e.g. the T_1 spaces?

Open questions

Then, for both **Raney** and **SZD**, even if $\mathbf{Frm}_{\mathcal{E}}$ and $\mathbf{Frm}_{\mathcal{B}}$ are different, the spectra induced by them are both pt_D . Equivalently, any terminal element $T \in \mathcal{C}$ of some fiber is always such that $\text{pt}_{\mathcal{C}}(T) \cong \text{pt}_D(\mathcal{O}T)$. The T_D axiom, and a duality for it, in both cases arises naturally when restricting to terminal objects.

Is this the case for all pointfree theories of T_0 spaces? If not, what are some natural assumptions on a pointfree theory $\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}$ of T_0 spaces that imply this? Can we define a useful such $\mathcal{O} : \mathcal{C} \rightarrow \mathbf{Frm}$ where the terminal objects of the fibers are some other class of spaces, e.g. the T_1 spaces?

Another possible direction is to define a notion of morphism between pointfree theories of T_0 spaces, and check how close **Raney** or **SZD** are to being universal in some sense in this category.