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2 SUMÁRIO

Prefácio

Diante da carência de textos introdutórios à “dinâmica topológica” em por-
tuguês, este texto se propõe a dar uma introdução ao assunto em nível ele-
mentar.

O grande mérito da “Dinâmica topológica” é a quantidade de aplicações
em diversas áreas da matemática. Então nada é mais natural do que motivar
seu estudo mediante uma dessas possíveis aplicações. Por isso, neste texto,
foram escolhidos como motivação alguns resultados em Teoria dos Números
e Combinatória.

Essas aplicações foram escolhidas por dois motivos. Um deles é a natu-
reza elementar dos resultados a serem demonstrados, tornando assim o livro
mais acessível aos graduandos. O outro é que as noções necessárias para
demonstrar tais resultados são razoáveis para se apresentar num primeiro
contato com a teoria.

Os pré-requisitos do assunto tratado neste texto que não são comumente
tratados num curso de graduação regular são trabalhados na referência [8].

A primeira versão deste texto foi escrita como parte do meu trabalho
de Iniciação Científica pela UnB, intitulada “Introdução à Dinâmica Topo-
lógica e Aplicações à Teoria dos Números”, no período de Agosto/2009 -
Agosto/2010. Essa Iniciação Científica recebeu apoio do CNPq e foi orien-
tada pelo professor Mauro Moraes Alves Patrão. Para mais detalhes sobre
a iniciação, o relatório é a referência [9], disponibilizada na página do grupo
de Teoria de Lie e Aplicações, cujo endereço é

http://teoriadelie.wordpress.com/

Resolvi colocar alguns merecidos agradecimentos aqui. Primeiramente,
agradeço às pessoas que foram determinantes para completar esse trabalho:
meus pais e minhas irmãs, pelo apoio, suporte, dedicação e incentivo durante
todos momentos e decisões.

Agradeço ao professor Mauro Patrão pela paciência e pela dedicação na
orientação durante o trabalho de Iniciação Científica. E aos professores que
deram momentos de conversas que causaram motivação e idéias em matemá-
tica. Em especial, ao professor Salahoddin Shokranian pela disponibilidade
para freqüência nessas conversas frutíferas.

Por fim, agradeço aos amigos e colegas que me incentivaram e ajudaram
durante a realização desse trabalho.



Capítulo 0

Introdução

Nesse capítulo, o objetivo é familiarizar o leitor com o contexto onde a Dinâ-
mica Topológica está inserida e, por fim, familiarizar o leitor com a disposição
e os objetivos do texto.

0.1 Dinâmica Topológica

No sentido clássico, um sistema dinâmico é um sistema de equações dife-
renciais com condições suficientes impostas para assegurar continuidade e
unicidade das soluções. Dessa forma, o sistema dinâmico define um fluxo no
espaço. Desde Poincaré, muitos resultados de interesse de sistemas dinâmi-
cos foram obtidos sem a hipótese de que esse fluxo tenha vindo de equações
diferenciais. A extensão desses resultados de fluxos para grupos de transfor-
mações mais gerais marcou o começo do desenvolvimento da teoria conhecida
como “Dinâmica Topológica”.

Desde então, a Dinâmica Topológica tomou “vida” e importância próprias.
Dentro dela surgiram novos problemas e questionamentos (alguns resolvidos
e outros não). Ao tomar essa “vida própria”, a Dinâmica Topológica ampliou
cada vez mais a sua área de aplicabilidade. Ela acabou, então, se revelando
uma ferramenta bastante útil e poderosa na investigação de problemas de
várias áreas da Matemática e, conseqüêntemente, em áreas afins.

Dentre as aplicações mais conhecidas, estão as aplicações em Análise Fun-
cional, em Equações Diferenciais, em Topologia, em Teoria dos Números
(principalmente em Aproximação Diofantina) e em Combinatória (principal-
mente na Teoria de Ramsey).
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4 CAPÍTULO 0. INTRODUÇÃO

0.2 Teoria dos Números

Nessa subseção, serão apresentados os resultados da Teoria dos Números e
da Combinatória que serão tratados neste texto.

0.2.1 Aproximação diofantina

O problema de aproximar números reais usando números racionais é o princi-
pal ponto dos resultados diofantinos que, aqui, serão tratados. Esse assunto
é chamado de “aproximação diofantina”. Um dos exemplos mais simples foi
provado por Kronecker (1823-1891), referência [7].

Esses resultados de teoria dos números tem aproximadamente 100 anos,
mas as demonstrações dinâmicas usam técnicas de argumentação muito mais
recentes, desenvolvidas por Hillel Furstenberg (1935- ) , referências [3] e [4].

Lema 0.1 (Lema de Kronecker (1857)) Para todo ε > 0 e α ∈ R, exis-
tem m ∈ Z e n ∈ N tais que |nα−m| < ε.

A densidade dos racionais na reta diz que, para todo α real e todo ε > 0,
existem m ∈ Z e n ∈ N tais que |nα−m| < nε. O resultado de Kronecker é
um pouco mais forte, pois diz que esses n ∈ N e m ∈ Z podem ser escolhidos
de tal forma que

|nα−m| < ε.

Note que o lema de Kronecker implica na densidade dos racionais. Porém
não há como demonstrar o lema de Kronecker partindo apenas da densidade
dos racionais (ou seja, esses dois resultados não são equivalentes). Usando
esse primeiro resultado em aproximação diofantina, será provado um outro
teorema de Kronecker que generaliza o anterior.

Teorema 0.2 (Teorema de Kronecker (1857)) Dados α ∈ (R−Q) e
λ ∈ R. Para todo ε > 0, existem m,n ∈ Z tais que |nα− λ−m| < ε.

Segue, abaixo, um teorema devido a Hardy (1877-1947) e a Littlewood
(1885-1977). Esse teorema é, de certa forma, uma generalização do lema
de Kronecker 0.1, pois diz que o natural multiplicando α pode ser escolhido
sendo quadrado perfeito. Ou seja, para todo α ∈ R e todo ε > 0, existem
m ∈ Z e n ∈ N tais que |n2α−m| < ε. A demonstração original desse
resultado está no contexto de teoria analítica dos números. No entanto,
aqui, a demonstração será puramente dinâmica.
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Teorema 0.3 (Hardy e Littlewood) Para todo α ∈ R e todo ε > 0, exis-
tem k ∈ Z e n ∈ N tais que |n2α−m| < ε.

Um último resultado de Aproximação Diofantina que será provado no
livro é o teorema de Furstenberg. Ele implica, em particular, que poderíamos
tomar o natural n ∈ N sendo um cubo perfeito, ou coisas ainda muito mais
gerais.

Teorema 0.4 (Teorema de Furstenberg (1967)) Seja p(x) um polinô-
mio de coeficientes reais tal que p(0) = 0. Para qualquer ε > 0, existem
n ∈ N e m ∈ Z tais que |p(n)−m| < ε.

Um exemplo de aplicação do teorema de Furstenberg é tomar

p(x) = πx23 + eπx3.

Para qualquer ε > 0, segue do teorema de Furstenberg que existem n ∈ N e
m ∈ Z tais que ∣∣πn23 + eπn3 −m

∣∣ < ε.

Nota-se que o teorema de Furstenberg implica no teorema de Kronecker
0.1. Para mostrar isso, dado α ∈ R, bastava tomar o polinômio p(x) = αx. E,
então, seguiria que, dado ε > 0, existem n ∈ N e m ∈ Z tais que |αn−m| =
|p(n)−m| < ε. Além disso, o teorema de Furstenberg implica no Teorema
de Hardy Littlewood: o argumento é análogo, tomando p(x) = αx2.

É possível, também, usar o resultado de Furstenberg para encontrar ver-
sões parecidas (generalizadas) do Teorema de Hardy-Littlewood. Como, por
exemplo, seguiria imediatamente do Teorema de Fursteberg que, para todo
α ∈ R, todo k ∈ N e todo ε > 0, existem n ∈ N e m ∈ Z tais que∣∣nkα−m∣∣ < ε.

0.2.2 Teoria de Ramsey

O resultado combinatório aqui trabalhado é da área chamada Teoria de
Ramsey. Essa teoria trabalha com a idéia de que um espaço com algum
tipo de propriedade, quando dividido em um número finito de “partes”, terá
ao menos um de seus “pedaços” ainda possuindo esta propriedade. Esse es-
paço pode ser um grupo, um espaço vetorial ou até mesmo grafos. Evidente
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que nem todo par espaço-propriedade satisfaz essa condição de Ramsey. En-
tão a Teoria de Ramsey estuda os tipos de espaço-propriedade que satisfazem
essa conservação mediante partições finitas. Sob outra perspectiva, pode-se
dizer que problemas da Teoria de Ramsey trabalham com a seguinte per-
gunta: “Dada uma estrutura com uma propriedade X, quantos elementos
dessa estrutura são necessários para garantir a conservação da propriedade
X?”. Ou ainda, “o quão “grande” deve ser a estrutura original para que, ao
ser particionado em r conjuntos, asseguremos que em ao menos um conjunto
desse tipo de partição esteja mantida uma dada propriedade que nos seja
interessante?”.

Um exemplo de resultado elementar da Teoria de Ramsey é o conhecido
“Princípio da Casa dos Pombos” que diz que se A é um conjunto com cardina-
lidade maior que n, então uma partição {Xi}i∈{1,2,3,...,n} de A em n conjuntos
é tal que, para ao menos um i ∈ {1, 2, 3, . . . , n}, a cardinalidade de Xi é
maior que 1.

A bela conexão entre a dinâmica e a teoria de Ramsey foi desenvolvida
por Furstenberg e a conexão entre a dinâmica topológica e a combinatória
foi elaborada por Furstenberg e Weiss. A Dinâmica Topológica e a Teoria
ergódica vêm sendo extensamente utilizada para demonstrar resultados em
Teoria de Ramsey. Nesse livro, será demonstrado um dos resultados mais
famosos dessa teoria, a saber o teorema de Van der Waerden, cujo enunciado
preciso será apresentado a seguir.

Definição 0.1 Seja X um conjunto. Uma partição finita de X é uma família
de conjuntos {C1, . . . , Cn} que satisfaz:

• Ci ∩ Cj = ∅, se i 6= j;

•
n⋃
i=1

Ci = X.

Na terminologia da combinatória, uma partição finita é denominado por “uma
coloração finita”. E dois elementos que pertencem a um mesmo conjunto da
partição são chamados monocromáticos.

Se o conjunto dos números naturais forem coloridos com duas cores (ou
seja, se o conjunto dos naturais for particionado por dois conjuntos), o con-
junto dos números colorido com uma das cores preserva muitos “padrões” dos
naturais. Quando usamos um número finito de cores, isso também ocorre.
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Uma P.A. finita de tamanho r + 1 ∈ N é um conjunto do tipo

{m,m+ n, . . . ,m+ rn} ,

onde n ∈ N e m ∈ Z. Segue o enunciado do Teorema de Van der Waerden,
referência [11].

Teorema 0.5 (Van der Waerden (1927)) Se Z = C1 ∪ C2 ∪ · · · ∪ Cr é
uma partição finita, dado r ∈ N, então, para algum j ∈ {1, 2, . . . , r}, Cj
contém uma progressão aritmética de tamanho r. Ou seja, toda coloração
finita de Z contém uma P.A. de tamanho arbitrário finito monocromática.
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Capítulo 1

Dinâmica Topológica

A dinâmica topológica estuda as propriedades topológicas dos sistemas dinâ-
micos. Em dinâmica topológica, um sistema dinâmico é um grupo topológico
agindo (continuamente) num espaço topológico. Neste texto, todos sistemas
dinâmicos têm espaço de fase compacto metrizável. Seguem as definições
precisas.

Definição 1.1 (Sistema Dinâmico) Sejam X um espaço metrizável com-
pacto e (G, ∗) um grupo topológico. Um sistema dinâmico é um par (X,φ),
onde φ é uma aplicação contínua

φ : G×X → X

(g, x) 7→ g · x

que satisfaz as seguintes propriedades:

1. Se e ∈ G é o elemento neutro de G, e · x = x, ∀x ∈ X;

2. Dados g, h ∈ G quaisquer e x ∈ X qualquer, g · (h · x) = (g · h) · x.

O espaço X é denominado o espaço de fase do sistema dinâmico; o grupo G
é denominado o grupo de fase; e φ a projeção de fase.

Um sistema dinâmico também pode ser denotado pela tripla (X,G, φ) ou
pelo par (X,G).

Convém observar que, dado um sistema dinâmico (X,G), tem-se que, para
todo g ∈ G, a aplicação g : X → X, onde g(x) = g ·x, é um homeomorfismo.

9
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Normalmente, em dinâmica topológica, os sistemas dinâmicos têm um
dos dois grupos de fase: Z ou R. Quando o grupo de fase é R, o sistema di-
nâmico é denominado contínuo e ele está associado a uma equação diferencial
ordinária. Quando o grupo de fase é Z, o sistema dinâmico é denominado
discreto.

Nesse livro, sistemas dinâmicos discretos serão amplamente tratados.
Portanto convém fazer algumas observações mais precisas a esse respeito.
Dado um sistema dinâmico (X,Z), existe um único homeomorfismo T : X →
X tal que, para todo n ∈ Z, n · x = T nx (onde T nx é a n-ésima iterada de
T em x). Note que, para isso, basta tomar T : X → X tal que Tx = 1 · x.
Temos que T é um homemorfismo e é fácil notar que n ·x = T nx. Reciproca-
mente, dado um homeomorfismo T : X → X, onde X é compacto metrizável,
é fácil definir um sistema dinâmico discreto (X,Z) fazendo n · x = T nx.

Logo, diante das observações, para sistemas dinâmicos discretos, adota-
se, também, a notação (X,T ), onde X é o espaço de fase e T : X → X é o
homeomorfismo tal que n · x = T nx (para todo n ∈ Z).

1.1 Linguagem Básica

Nesta seção, apresentaremos alguns exemplos de sistemas dinâmicos, para
que possamos, motivados pelos exemplos, introduzir certas noções importan-
tes da Dinâmica Topológica, como pontos periódicos ou fixos. A noção de
órbita nos dá base para desenvolver o resto da linguagem básica dos sistemas
dinâmicos.

Definição 1.2 (Órbita de um ponto) Seja (X,G, φ) um sistema dinâmico.
Dado um ponto x ∈ X, o conjunto

G · x = {g · x : g ∈ G}

é chamado de órbita do ponto x.

Exemplo 1.2.1 Seja S1 = {u ∈ C : |u| = 1}. Tem-se que S1 é compacto
metrizável. Define-se o homeomorfismo R1/2 : S1 → S1, onde R1/2x = eπix.
E, então, temos o sistema dinâmico (S1, R1/2). Tem-se que a órbita de 1 é
Z · S1 = {1, eπi}.

Esse sistema dinâmico é ilustrado na figura 1.1.
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Figura 1.1: Sistema de rotação por π radianos.

O tipo mais simples de órbita é a órbita de um ponto fixo. Segue a
definição de ponto fixo.

Definição 1.3 (Ponto fixo) x ∈ X é um ponto fixo do sistema dinâmico
(X,G), quando sua órbita é um conjunto unitário. Ou seja, x ∈ X é um
ponto fixo, quando G · x = {x}.

Exemplo 1.3.1 Seja S1 = {u ∈ C : |u| = 1}. Fixando j ∈ S1, pode-se, de
maneira geral, definir o homeomorfismo Tj : S1 → S1, Tj(x) = jx. Segue
que (S1, Tj) possui ponto fixo se, e somente se, j = 1. E, sendo j = 1, T1 é
identidade e, portanto, todo ponto de (S1, T1) é fixo.

Definição 1.4 (Órbita de um conjunto) Sejam (X,G) um sistema di-
nâmico e U ⊂ X. A órbita de U é o conjunto

G · U = {t · x : t ∈ G e x ∈ U} =
⋃
x∈U

G · x =
⋃
g∈G

g · U.

Exemplo 1.4.1 Seja S1 = {u ∈ C : |u| = 1}. Dado α ∈ (R − Q), define-se
Rα : S1 → S1, Rαx = e2παx. E, então, temos o sistema dinâmico (S1, Rα),
que é denominado rotação irracional do círculo. Nesse tipo de sistema dinâ-
mico, dado um aberto U ⊂ S1 qualquer, veremos que Z · U = S1.

Definição 1.5 (Ponto periódico) Seja (X,G) um sistema dinâmico. x ∈
X é um ponto periódico desse sistema dinâmico, se, para algum g ∈ G dife-
rente do elemento neutro, g · x = x.
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Exemplo 1.5.1 Evidente que todo ponto fixo é ponto periódico. Além disso,
no exemplo 1.2.1, todo ponto é periódico em (S1, R1/2).

Fixado α ∈ Q, define-se Rα : S1 → S1, onde Rα(z) = e2παz: esse sistema
dinâmico é chamado de rotação racional do círculo.Veremos, neste texto, que
todo ponto de (S1, Rα) é periódico.

A figura 1.2 abaixo ilustra o sistema para α = 1/4.

Figura 1.2: Rotação racional do círculo.

Em um sistema dinâmico qualquer, evidente que, se a órbita de um ponto
é finita, então esse ponto é periódico. Num sistema dinâmico discreto, a
recíproca é verdadeira. Segue o enunciado desse lema (e sua demonstração).

Lema 1.1 Seja (X,Z) um sistema dinâmico. Dado x ∈ X, Z · x é finita se,
e somente se, x é periódico. No caso em que x é periódico, denomina-se a
cardinalidade de Z · x de “periodo de x”.

Prova: Com efeito, seja (X,Z) um sistema dinâmico. Se x ∈ X é periódico,
segue que existe n ∈ Z− {0} tal que n · x = x. Tem-se, então, que −n é tal
que −n · x = x, afinal, −n · x = −n · (n · x) = (−n+ n) · x = 0 · x = x. Logo
podemos supor, sem perda de generalidade, que n > 0.

Provemos que, dado m ∈ Z, m · x = m(mod n) · x. Com efeito, dado
l = m(mod n), segue que m− l = kn (para algum k ∈ Z ). Logo (m− l) ·x =
(kn) · x = x e, portanto, l · x = l · ((m− l) · x) = m · x. Isso completa a prova
de que m · x = m(mod n) · x.
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Provou-se, então, que a cardinalidade de Z · x é menor ou igual a n. �

1.2 Homomorfismos

Um ponto importante no estudo de Sistemas Dinâmicos é a construção de
novos sistemas dinâmicos partindo de outros. Um dos meios mais elementares
de construir um sistema dinâmico é o sistema dinâmico produto.

Definição 1.6 (Sistema dinâmico produto) Sejam (X,G) e (Y,G) sis-
temas dinâmicos. Define-se o sistema dinâmico produto como sendo (X ×
Y,G), onde g · (x, y) = (g · x, g · y). Note que, de fato, isso é um sistema
dinâmico, afinal, como X, Y são compacto metrizáveis, segue que X × Y é
compacto metrizável. Além disso, é evidente que a ação é contínua e continua
satisfazendo as condições de ação.

Exemplo 1.6.1 Seja S1 = {x ∈ C : |x| = 1}. Definem-se Id : S1 → S1,
onde Id(x) = x, e Rπ : S1 → S1, onde Rπx = e2π2

x. Então temos os dois
sistemas dinâmicos (S1, Id) e (S1, Rπ). Tem-se que S1 × S1 = T2 é o toro.
Com os resultados que serão apresentados neste texto, será fácil notar que o
sistema dinâmico produto (T2,Z) de (S1, Id) e (S1, Rπ), ilustrado na figura
1.3, é tal que nenhum ponto é periódico nem fixo.

Figura 1.3: Sistema dinâmico produto.

Ao tratarmos aqui de um sistema dinâmico (X,G), estamos particular-
mente interessados nas propriedades topológicas de (X,T ). Após definir
homomorfismos entre sistemas dinâmicos, teremos o significado preciso do
que são essas propriedades.
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Definição 1.7 (Homomorfismo de sistemas dinâmicos) Um homomor-
fismo entre dois sistemas dinâmicos (X,G) e (Y,G) é uma aplicação contínua
φ : X → Y tal que, para todo g ∈ G e todo x ∈ X,

g · φ(x) = φ(g · x).

Quando φ : X → Y é sobrejetivo, diz-se que φ é uma semi-conjugação
topológica. E, quando o φ : X → Y é um homeomorfismo, diz-se que os
sistemas dinâmicos (X,G) e (Y,H) são isomorfos. E, nesse caso, eles são
indistinguíveis em nosso estudo.

É fácil notar que isomorfismo entre sistemas dinâmicos é uma relação de
equivalência.

Exemplo 1.7.1 Sejam (X,G) e (Y,G) dois sistemas dinâmicos. Toma-se o
sistema dinâmico produto (X×Y,G). Segue que a projeção φ1 : X×Y → X,
φ1(x, y) = x, é um semi-conjugação entre (X × Y,G) e (X,G). De forma
análoga, a projeção φ2 : X×Y → Y é uma semi-conjugação entre (X×Y,G)
e (Y,G).

Dessa forma, dados os sistemas dinâmicos do exemplo 1.6.1, segue que
a projeção do toro no círculo φ : T2 → S1 tanto é uma semi-conjugação
entre (T2,Z) e (S1, Rπ), como ilustrado na figura 1.4, quanto é uma semi-
conjugação entre (T2,Z) e (S1, Id).

Figura 1.4: Semi-conjugação projeção.

A propriedade mais simples que é preservada por isomorfismos entre sis-
temas dinâmicos é a de e existência de pontos fixos e pontos periódicos.
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Proposição 1.2 Sejam (X,G) e (Y,G) sistemas dinâmicos. Se π : X → Y
é um homomorfismo entre os sistemas dinâmicos, segue que, se x ∈ X é
periódico em (X,G), então π(x) ∈ Y é periódico em (Y,G). Se y ∈ X é fixo,
segue que π(y) é fixo em (Y,G)

Prova: Com efeito, se x ∈ X é periódico, segue que existe g ∈ G tal que
g · x = x. Segue, então, que g · π(x) = π(g · x) = π(x), ou seja, π(x) é
periódico. Para provar a segunda afirmação, seja y ∈ X fixo. Dado h ∈ G,
tem-se que h · π(y) = π(h · y) = π(y). Logo π(y) é fixo em (Y,G). �

As propriedades que são preservadas por isomorfismos são denominadas
“propriedades topológicas” dos sistemas dinâmicos.

Definição 1.8 Um sistema dinâmico discreto (Y, S) é um fator do sistema
dinâmico discreto (X,T ), se existe uma semi-conjugação φ : X → Y . A apli-
cação φ é chamada aplicação fator. Nesse caso, (X,T ) é uma extensão
de (Y, S).

A imagem inversa de cada ponto por uma aplicação fator é chamada de
fibra e o conjunto {φ−1(y) : y ∈ Y } é chamado de conjunto das fibras.

Sejam (X,T ) e (Y, S) sistemas dinâmicos discretos. A condição para que
φ : X → Y seja um homomorfismo entre os sistemas dinâmicos é apresentado
na proposição seguinte.

Proposição 1.3 Sejam (X,T ) e (Y, S) sistemas dinâmicos discretos. Se
φ : X → Y é uma aplicação contínua tal que

φ(Tx) = S(φ(x)),

então φ um homomorfismo entre (X,T ) e (Y, S)

Prova: Com efeito, para provar a proposição basta provar que, para todo
x ∈ X e todo n ∈ Z, Sn(φ(x)) = φ(T nx). Dado x ∈ X, provemos que
Sn(φ(x)) = φ(T nx) para todo n ∈ N. Para n = 1, a afirmação coincide com
a hipótese. Supõe-se por indução que a afirmação seja verdadeira para um
m. Segue que Sm+1(φ(x)) = S(Sm(φ(x))) = S(φ(Tmx)) = φ(T (Tmx)) =
φ(Tm+1x). Isso completa a prova por indução de que Sn(φ(x)) = φ(T nx)
para todo n ∈ N.
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Para completar a prova, basta provar por indução que

S−n(φ(x)) = φ(T−nx)

para todo n ∈ N. Tem-se que, fazendo x = Ty, φ(T (y)) = S(φ(y)). Portanto,
como y = T−1(x), segue que

S−1(φ(x)) = φ(y) = φ(T−1(x)).

Logo a afirmação é verdadeira para n = 1. O resto de demonstração por
indução é análogo à indução anterior. �

1.3 Minimalidade

Definição 1.9 Seja (X,G) um sistema dinâmico. Um subconjunto Y de X
é denominado G-invariante, se G · Y = Y .

No caso de um sistema dinâmico discreto (X,T ), podemos falar que Y ⊂
X é Z-invariante ao satisfazer T (Y ) = TY ⊂ Y e T−1(Y ) ⊂ Y . Neste caso,
usa-se a terminologia T -invariante.

Exemplo 1.9.1 Seja (X,G) um sistema dinâmico. Para todo x ∈ X, a
órbita de x é um subconjunto G-invariante. Com efeito, basta ver que, evi-
dentemente, dados y ∈ G ·x e h ∈ G, tem-se que y = g ·x para algum g ∈ G.
E, portanto, h · y = h · (g · x) = (hg) · x ∈ G · x.

De forma análoga, conclui-se que, se (X,G) é um sistema dinâmico, a
órbita de qualquer subconjunto V ⊂ X é G-invariante.

Alguns resultados básicos sobre subconjuntos invariantes serão provados
antes de definirmos um dos principais conceitos envolvendo subconjuntos
invariantes: o de subconjunto minimal.

O fecho de um subconjunto invariante num sistema dinâmico é, ainda,
invariante. Disso segue que o fecho da órbita de um conjunto (ou de um
ponto) é invariante. Esses resultados serão formalizados e provados abaixo.

Lema 1.4 Seja (X,G) um sistema dinâmico. Se Y ⊂ X é G-invariante,
segue que Y é G-invariante.

Em particular, para todo x ∈ X, G · x é G-invariante. E, para todo
Y ⊂ X, G · Y é G-invariante.
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Prova: Com efeito, se Y é G-invariante, tem-se que, dado g ∈ G, g ·Y ⊂ Y ,
donde segue que (g · Y ) ⊂ Y . E, portanto, pela continuidade da ação,

g · Y ⊂ (g · Y ) ⊂ Y .

Ficou provado, então, que Y é G-invariante.
Em particular, dados x ∈ X e Y ⊂ X, tem-se que G · x e G · Y são

G-invariantes. Logo G · x e G · Y são G-invariantes. �

Se um subconjunto é invariante num sistema dinâmico, o mesmo ocorrerá
com o seu complementar. Isso é um resultado bem fácil de se deduzir que será
usado muitas vezes em demonstrações pelo texto, portanto será enunciado e
provado abaixo.

Lema 1.5 Sejam (X,G) um sistema dinâmico e Y ⊂ X um subconjunto
G-invariante. Segue que X − Y = Y C é G-invariante.

Prova: Com efeito, prova-se por contraposição. Se Y C = X − Y não é
G-invariante, segue que existem g ∈ G e y ∈ Y C tais que g · y ∈ Y . Logo
segue que Y não é G-invariante, pois existe g · y ∈ Y tal que

g−1 · (g · y) = e · y = y 6∈ Y.

�

Definição 1.10 (Subconjunto minimal) Seja (X,G) um sistema dinâ-
mico. M ⊂ X é minimal se é um subconjunto não-vazio, G-invariante,
fechado e que não contenha partes próprias não-vazias fechadas que sejam
G-invariantes. Ou seja, M ⊂ X é minimal, se

1. M é fechado e G-invariante;

2. F ⊂M , F 6= ∅, F fechado e G-invariante =⇒ F = M .

Por sua vez, um sistema dinâmico (X,T ) é denominado minimal se X é
minimal desse sistema dinâmico.
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Exemplo 1.10.1 Define-se Rπ : S1 → S1, Rπx = e2π2
x. Veremos, neste

texto, que (S1, Rπ) é minimal. Mais geralmente, se α ∈ (R − Q), define-se
Rαx = e2παx. E, então, (S1, Rα) é minimal.

É fácil verificar que a propriedade de minimalidade é um invariante por
isomorfismos em sistemas dinâmicos.

Note que um sistema dinâmico é minimal se, e somente se, a órbita de
todo ponto é densa no espaço de fase. Apesar de isso ser uma conseqüência
direta da definição, será enunciado como um lema para futuras referências.

Lema 1.6 Um sistema dinâmico (X,G) é minimal se, e somente se, todo
ponto de X tem órbita densa em X.

Prova: De fato, seja (X,G) um sistema dinâmico minimal. Se o fecho da
órbita de um ponto x de X fosse uma parte própria de X , então X não seria
minimal, pois, pelo lema 1.4, o fecho da órbita de x é G-invariante (e, no
caso, obviamente, não-vazio e fechado). Logo o fecho da órbita de qualquer
ponto é necessariamente X.

Reciprocamente, se X não é minimal, segue que existe uma parte própria
F de X fechada T -invariante não-vazia. Dado x ∈ F , tem-se que G · x ⊂ F
e, então, G · x ⊂ F 6= X. Isso completa a prova de recíproca. �

Definição 1.11 (Subsistema) Seja (X,G) um sistema dinâmico (espaço
de fase metrizável compacto). Se Y ⊂ X é fechado e G-invariante, (Y,G) é
chamado de subsistema do sistema dinâmico (X,G).

Note que, nesse caso, de fato, (Y,G) é um sistema dinâmico. Afinal, é
evidente que a ação mantém suas propriedades. Além disso, Y é fechado do
compacto metrizável X e, portanto, é compacto metrizável.

Em particular, se M ⊂ X é minimal do sistema dinâmico (X,G), pode-se
tomar o subsistema (M,G).

Um importante teorema de caracterização de sistemas dinâmicos mini-
mais segue abaixo.

Teorema 1.7 Seja (X,G) um sistema dinâmico. São equivalentes as se-
guintes afirmações:
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1. (X,G) é um sistema dinâmico minimal;

2. Os únicos fechados Y ⊂ X T -invariantes são ∅ e X;

3. Para todo conjunto não-vazio aberto U ⊂ X, G · U = X;

4. Pata todo aberto não-vazio U ⊂ X, existem g1, . . . , gk ∈ G tais que
k⋃
i=1

gi · U = X.

Prova: (1)=⇒(2) é óbvia. Para provar que (2)=⇒(3), dado U ⊂ X aberto
e não vazio, segue que, por G · U ser um aberto, o seu complementar F é
um fechado. Tem-se que G · U é G-invariante, logo F é G-invariante. Pela
hipótese, por F ser fechado G-invariante, segue que F ou é igual a X, ou
é vazio. Como X − F = FC = G · U é necessariamente não vazio (pois ao
menos ∅ 6= U ⊂ G · U ), segue que F = ∅, ou seja, G · U = X.

Para provar que (3)=⇒(4), basta ver que, dado U ⊂ X aberto não-
vazio, G · U =

⋃
g∈G

g · U = X é uma cobertura aberta de X e, portanto,

pela compacidade de X, existe uma subcobertura finita, ou seja, existem

g1, . . . , gk ∈ G tais que
k⋃
i=1

gi · U = X.

Para provar que (4)=⇒(1), faremos prova por contraposição. Ou seja,
provaremos que negação de (1) implica na negação de (4). Seja (X,G) não
minimal, segue que existe um fechado não-vazio F ⊂ X G-invariante tal que
F 6= X. Toma-se U = X −F que, pela hipótese, é não-vazio. Tem-se, então,
que U é G-invariante. Logo ⋃

g∈G

g · U = U 6= X.

Em particular, isso quer dizer que não existe um subconjunto finito g ⊂ G
tal que

⋃
g∈g

g · U = X. �

Teorema 1.8 Todo sistema dinâmico (X,G) possui um subconjunto mini-
mal M ⊂ X.
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Prova: Seja (X,G) um sistema dinâmico. Coloquemos a ordem parcial da
inclusão na família F dos subconjuntos fechados não-vazios G-invariantes de
X. Essa família é não vazia, pois ao menos X ∈ F. Note que um subconjunto
fechado de um compacto é compacto e, portanto, todo elemento de F é
compacto.

Dada uma cadeia K qualquer de F, a interseção dos elementos de uma
subfamília finita qualquer

{B1, . . . , Bn} ⊂ K

é igual ao menor conjunto e, portanto, é não vazia. Logo, por K ser uma
família de fechados de X que satisfaz a propriedade de interseção finita, a
interseção

⋂
F∈K

F é não vazia. Note que essa interseção é uma cota inferior da

cadeia K. Ou seja, foi provado que conseguimos uma cota inferior para toda
cadeia de F e, portanto, pelo lema de Zorn, temos que F tem um elemento
minimal M .

Note que o fechado M é G-invariante e é não vazio, pois M ∈ F . Se
M0 ⊂M é fechado, não-vazio e G-invariante, segue que M0 ∈ F e M0 ⊂M ,
ou seja, M0 = M . Isso completa a prova de que M ⊂ X é um conjunto
minimal de (X,G) e, portanto, completa a demonstração do teorema. �



Capítulo 2

Recorrências

Esse capítulo será dedicado a um dos conceitos mais básicos da dinâmica to-
pológica: o de recorrência (de Poincare). Esse conceito é intimamente ligado
à noção de minimalidade. Um dos resultados mais fundamentais desse capí-
tulo é o teorema de Birkhoff (resultado 2.3.1). Esse resultado será provado
logo depois de apresentado o conceito de conjunto ω-limite.

Seguem a definição de ponto recorrente e um lema importante sobre ima-
gem de pontos recorrentes por homomorfismos.

Definição 2.1 Seja (X,T ) um sistema dinâmico discreto. Um ponto x ∈ X
diz-se recorrente se existe uma seqüência de números inteiros (nj) tal que
nj →∞ e tal que nj · x→ x.

Lema 2.1 Sejam (X,T ) e (Y, S) sistemas dinâmicos discretos. Se π : X →
Y é um homomorfismo e x ∈ X é recorrente, segue que π(x) ∈ Y é recorrente.

Prova: Com efeito, dada uma vizinhança U ⊂ Y de π(x), segue que π−1(U) é
uma vizinhança de x. Por x ser recorrente, Cπ−1(U) = {n ∈ N : T nx ∈ π−1(U)}
é infinito.

Dado m ∈ Cπ−1(U), segue que Sm(π(x)) = π(Tmx) ∈ U . Isso provou que

CU = {n ∈ N : Sn(π(x)) ∈ U} ⊂ Cπ−1(U).

E, portanto, CU é infinito. Logo completou-se a prova de que π(x) é recor-
rente em (Y, S). �

21
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2.1 Conjuntos Limites

Num sistema dinâmico discreto minimal, provaremos que todos os pontos
são recorrentes. Note que provamos a existência de um subconjunto minimal
num sistema dinâmico, logo segue que todo sistema dinâmico discreto possui
pontos recorrentes (basta tomar um ponto do subconjunto minimal).

Antes de provar esses resultados, seguiremos definindo mais uma impor-
tante noção em Dinâmica Topológica. Essa noção é a de conjuntos limites.
Seja (X,T ) um sistema dinâmico discreto, dado x ∈ X, dizer que y pertence
ao conjunto ω-limite de x significa, intuitivamente, que as iterações de x
estarão “freqüentemente” perto de y. As noções de conjuntos limites como
serão definidas aqui são restritas a sistemas dinâmicos discretos. Portanto,
nesta seção, todos os sitemas dinâmicos serão discretos.

Definição 2.2 (Conjunto ω - limite) Seja (X,T ) um sistema dinâmico
discreto. Dado x ∈ X, um ponto y ∈ X é ω−limite de x, se existir uma
seqüência nk → ∞ tal que nk · x → y. Em particular, se y é ω−limite ,
tem-se que y ∈ (Z+ · x). O conjunto ω−limite de x, denotado por ω(x), é
o conjunto de todos pontos ω−limites. Note que

ω(x) =
∞⋂
n=1

{t · x : t > n}.

Nesses termos, dizer que x ∈ X é um ponto recorrente é equivalente a
dizer que x ∈ ω(x). Ou seja, se (X,T ) é um sistema dinâmico discreto, x ∈ X
é recorrente se, e somente se, x pertence ao seu próprio conjunto ω−limite.

Lema 2.2 Seja (X,T ) um sistema dinâmico discreto. O conjunto ω−limite
de qualquer ponto x de X é não-vazio, fechado, compacto e T -invariante.

Prova: Com efeito, como X é um espaço métrico compacto, segue que
toda seqüência de pontos em X possui uma subseqüência convergente, logo,
de fato, o conjunto ω−limite de qualquer ponto x ∈ X é não-vazio, pois
a seqüência (n · x) possui uma subseqüência convergente. Como o conjunto
ω−limite é uma interseção de fechados, segue que é, também, fechado. Como
ele é um fechado de um compacto, segue que o conjunto ω−limite é compacto.

Dado y ∈ ω(x), segue que existe uma seqüência (nk) de números natu-
rais tal que nk → +∞ e nk · x → y. Se m ∈ Z, segue que (nk + m) é um
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seqüência de números inteiros tal que nk +m→ +∞ e (nk +m) · x→ m · y
(pois T é contínua). Logo m · y ∈ ω(x). Se tirarmos os termos negativos da
seqüência (nk −m), conseguimos uma seqüência (mk) de números naturais
tal que mk → +∞ e mk · x→ (−m) · y. Portanto (−m) · y ∈ ω(x) e, então,
ω(x) é T -invariante. �

Veremos que, com o resultado 2.2, segue diretamente que todos os pontos
de um sistema dinâmico minimal discreto são recorrentes.

Proposição 2.3 Seja (X,T ) um sistema dinâmico discreto minimal. Tem-
se que todo ponto x ∈ X é recorrente.

Prova: Com efeito, seja (X,T ) é um sistema dinâmico discreto minimal.
Dado x ∈ X, segue que ω(x) é um subconjunto fechado não-vazio e T -
invariante. Mas, como (X,T ) é minimal, segue que ω(x) = X. E, portanto,
em particular, x ∈ ω(x), donde segue que x é recorrente. �

Evidente que a recíproca da proposição 2.3 não é verdadeira: por exemplo,
é muito fácil construir sistemas dinâmicos não minimais tais que todos seus
pontos são todos periódicos (em particular, recorrentes).1

Segue o teorema de Birkhoff que fala da existência de pontos recorrentes
em todo sistema dinâmico discreto.

Corolário 2.3.1 (Teorema de Birkhoff) Todo sistema dinâmico discreto
(X,T ) possui um ponto recorrente.

Prova: Dado um sistema dinâmico (X,T ), segue pelo teorema 1.8 que existe
M ⊂ X minimal. Evidente que M é compacto (pois é fechado de um com-
pacto), logo podemos considerar o subsistema (M,T ). Pela proposição 2.3,
(M,T ) é tal que todo x ∈M é recorrente. Evidente que x ∈M é recorrente
no sistema (X,T ). �

2.2 Translações em Grupos

O sistema de translação em grupos compactos metrizáveis é um sistema di-
nâmico com propriedades bem interessantes, principalmente em relação a

1Um exemplo já apresentado em 1.5.1 é a rotação racional do círculo.
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recorrências. Por essas propriedades, esses sistemas dinâmicos se tornaram
muito importantes na teoria. Além de ser um sistema dinâmico muito impor-
tante e comum, esse tipo de sistema dinâmico será usado na demonstração
de um dos teoremas sobre Aproximação Diofantina. Segue a definição de
sistema de translação.

Definição 2.3 (Sitema de Translação) Seja (G, ·) um grupo compacto me-
trizável, fixa-se r ∈ G. Define-se, então, T : G → G, T (x) = r · x. A
aplicação T é evidentemente um homeomorfismo (por G ser um grupo to-
pológico). T é chamada de translação e o sistema (G, T ) é chamado de
sistema dinâmico da translação por r, ou sistema de translação r.

Exemplo 2.3.1 Temos que S1 é um grupo metrizável compacto. Define-se
Rα : S1 → S1, Rπx = e2παx. Segue que (S1, Rα) é um sistema de translação
por u = e2πα.

A proposição abaixo ilustra uma das interessantes propriedades que um
sistemas de translação tem.

Proposição 2.4 Seja (G, T ) um sistema dinâmico de translação. As órbitas
dos pontos de G são todas homeomorfas entre si.

Prova: Seja (G, T ) um sistema dinâmico de translação por a ∈ G. Com
efeito, dados g ∈ G, define-se f : Z · a → Z · g, f(an) = ang = n · g. É
evidente que f é contínua e é uma bijeção. Tem-se que f−1 : Z · g → Z · a
, f−1(ang) = (ang)g−1 = an é contínua. Logo f é um homeomorfismo. Isso
completou a prova da proposição. �

Essa proposição implica, por exemplo, que, se algum ponto num sistema
dinâmico de translação tem órbita finita, então todos os pontos desse sistema
dinâmico possuem órbitas finitas. Ou seja, segue o seguinte lema.

Lema 2.5 Seja (G, T ) um sistema de translação por a ∈ G. Todo ponto de
um sistema de translação é periódico se, e somente se, algum ponto de G é
periódico.

Além dessas importantes propriedades, tem-se a seguinte propriedade.



2.2. TRANSLAÇÕES EM GRUPOS 25

Lema 2.6 Seja (G, T ) um sistema dinâmico de translação por a ∈ G. Segue
que (G, T ) é minimal se, e somente se, existe um ponto de G com órbita
densa.

Prova: Note que é evidente que a minimalidade implica que a órbita de
qualquer ponto de G é densa em G (segue do lema 1.6).

Reciprocamente, seja g ∈ G um ponto com órbita densa. Dado h ∈ G,
provemos que a órbita de h é densa. Dado r ∈ G tem-se que existe uma
seqüência de números inteiros não necessariamente distintos (nk) tal que
nk · g → rh−1g. Pela continuidade do produto, segue que nk · h → r. Isso
provou que a órbita de h é densa e, portanto, completa a prova de que todo
ponto de G tem órbita densa. Pelo lema 1.6, segue que (G, T ) é minimal. �

E, por fim, todo sistema dinâmico de translação é recorrente: no sentido
de que todos seus pontos são recorrentes. Esse resultado será muito impor-
tante: será usado no principal resultado sobre produtos cruzados e, também,
numa demonstração sobre aproximação diofantina.

Proposição 2.7 Seja (G, T ) um sistema de translação por a ∈ G. Todos
pontos de G são recorrentes.

Prova: Pelo teorema de Birkhoff, existe um ponto z ∈ G recorrente em
(G, T ). Segue que existe nj → ∞ tal que anjz → z. Dado g ∈ G, pela con-
tinuidade do produto no grupo topológico, segue que anjg = anjzz−1g → g.
Ou seja, g é recorrente. �

A proposição anterior poderia ter sido demonstrada sem usar o teorema
de Birkhoff. Dados a ∈ G e u ∈ G, toma-se a seqüência (an). Temos, pela
compacidade de G, que existem nj →∞ e v ∈ G tais que anj → v. Mas, sem
perda de generalidade, podemos supor que mj = nj+1 − nj →∞. Portanto,
pela continuidade do produto e da inversão, tem-se que

amju = anj+1(anj)−1u→ vv−1u = u.

Isso provou, então, que, num sistema de rotação por a (qualquer), todo ponto
é recorrente.
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2.3 Produtos Cruzados

Nesta seção, os sistemas dinâmicos são todos discretos. Já sabemos que a
imagem de um ponto fixo, periódico ou recorrente por uma semiconjugação
entre sistemas dinâmicos discretos tem a propriedade preservada. Mas nada
pode ser dito da imagem inversa. No entanto, mediante certas condições,
esse quadro é mudado (e, então, conseguiremos mais informações usando
a semi-conjugação entre dois sistemas dinâmicos discretos). A maior parte
dessa seção dedica-se a esse mérito.

Definição 2.4 Sejam (Y, S) um sistema dinâmico discreto, G um grupo
compacto metrizável e φ : Y → G uma aplicação contínua. Define-se o
par (X,T ), onde X = Y × G e T (y, g) = (Sy, φ(y)g). Esse par é chamado
de produto cruzado de (Y, S) via o grupo G pela aplicação φ. (X,T ) também
é chamado de produto cruzado de (Y, S) e G.

Se (Y, S) é um sistema dinâmico discreto, então o produto cruzado (X,T )
de (Y, S) via o grupo G por uma aplicação φ é um sistema dinâmico discreto.
Além disso, (X,T ) é uma extensão de (Y, S). A proposição abaixo estabelece
essas afirmações.

Proposição 2.8 Sejam (Y, S) um sistema dinâmico discreto, G um grupo
compacto metrizável e (X,T ) um produto cruzado de (Y, S) via G. Tem-se
que (X,T ) é um sistema dinâmico e é uma extensão de (Y, S), onde

π : X → Y

(y, g) 7→ y

é a semi-conjugação entre (X,T ) e (Y, S).

Prova: De fato, X é produto cartesiano de dois espaços métricos compactos
e, portanto, é um espaço métrico compacto. A transformação T é contínua
em cada uma de suas coordenadas e, portanto, é contínua. A aplicação
inversa é definida por

T−1(x, h) = (S−1x, (φ(S−1x))−1h)

e é evidentemente contínua (logo, de fato, T é um homeomorfismo).
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Resta verificar que, de fato, (X,T ) é uma extensão. Ora, basta, então,
verificar que π : X → Y , onde π(y, g) = y é uma semi-conjugação. Isso
é, obviamente, uma aplicação sobrejetiva contínua (é, na verdade, a proje-
ção). Basta, então, verificar que π(T (y, g)) = S (π(y, g)). Dado (y, g) ∈ X,
π(T (y, g)) = Sy. Também ocorre que S (π(y, g)) = Sy. Logo essa condição
é satisfeita, ou seja, provamos que, de fato, π é uma semi-conjugação. �

Definição 2.5 Sejam (Y, S) um sistema dinâmico discreto, G um grupo
compacto metrizável e (X,T ) um produto cruzado de (Y, S) via G. Uma
translação à direita do produto cruzado (X,T ) por h ∈ G é uma aplicação
Rh : X → X tal que Rh(y, g) = (y, gh).

Proposição 2.9 Sejam (Y, S) um sistema dinâmico discreto, G um grupo
compacto metrizável e (X,T ) um produto cruzado de (Y, S) via G. Então,
para todo h ∈ G, a translação Rh é uma conjugação2 de (X,T ) nele mesmo.

Prova: Rh é obviamente um homeomorfismo. Resta apenas provar que T e
Rh comutam. Dado x = (y, g) ∈ X, tem-se que

Rh(Tx) = Rh(Sy, φ(y)g)

= (Sy, φ(y)gh)

= T (y, gh)

= TRh(y, g)

= TRh(x)

�

O principal mérito desta seção é construir uma condição suficiente para
que o sistema dinâmico discreto fator (Y, S) traga informações sobre os pontos
de recorrência de sua extensão (X,T ). No caso, essa condição suficiente é
(X,T ) ser um produto cruzado de (Y, S) via um grupo compacto metrizável
G. Isso é amplamente utilizado em dinâmica topológica. Em particular,
tudo feito nesta seção será importante nas demonstrações dos teoremas sobre
aproximação diofantina. Segue um resultado que torna isso mais claro.

2Ou seja, isomorfismo de sistemas dinâmicos.
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Teorema 2.10 Sejam (Y, S) um sistema dinâmico discreto, G um grupo
compacto metrizável e (X,T ) um produto cruzado de (Y, S) via G. y ∈ Y é
recorrente se, e somente se, (y, g) é recorrente em X para todo g ∈ G (ou
seja, todos pontos de sua fibra são recorrentes).

Prova: Como (X,T ) é uma extensão de (Y, S), segue do lema 2.1 que, se
x ∈ X recorrente, então π(x) é recorrente.

Reciprocamente, seja e ∈ G o elemento neutro de G. Primeiramente,
prova-se que y ∈ Y recorrente implica (y, e) ∈ X recorrente. Como y ∈ Y é
recorrente, segue que existe nj →∞ tal que Snjy → y. Como X é compacto,
pode-se supor, sem perda de generalida (passando a uma subseqüência se
necessário), que (T nj(y, e)) converge. Tem-se que T nj(y, e) → (y, h) para
algum h ∈ G. Ou seja, (y, h) ∈ ω(y, e).

Prova-se que Rh(ω(y, e)) ⊂ ω(y, e). Dado (z, a) ∈ ω(y, e), segue que
existe mj →∞ tal que Tmj(y, e)→ (z, a). Logo

Tmj(y, h) = TmjRh(y, e)

= Rh(T
mj(y, e))

→ Rh(z, a).

Como ω(y, e) é T -invariante, Tmj(y, h) ∈ ω(y, e) para todo os índices mj.
E, por ω(y, e) ser fechado, segue que Rh(z, a) ∈ ω(y, e).

Logo, em particular, segue que Rm
h (y, h) = (y, hm+1) ∈ ω(y, e) para todo

m ∈ N. Pelo resultado 2.7, segue que existe sj →∞ tal que (y, hsj)→ (y, e)
e, como ω(y, e) é fechado, isso prova que (y, e) ∈ ω(y, e), ou seja, (y, e) é
recorrente.

Por (y, e) ser recorrente, existe kj →∞ tal que T kj(y, e)→ (y, e). Dado
g ∈ G, segue, pela continuidade de Rg, que

T kj(y, g) = Rg(T
kj(y, e))→ Rg(y, e) = (y, g),

ou seja, foi provado que (y, g) é recorrente. �

2.4 Recorrência Múltipla

Nesta seção, recorreremos às definições e aos resultados sobre sistemas dinâ-
micos mais gerais. O principal objetivo dessa seção é provar o teorema 2.13
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.

Definição 2.6 Dados dois sistemas dinâmicos (X,G) e (X,H), diz-se que
(X,G) e (X,H) comutam entre si, se para todo g ∈ G, todo h ∈ H e todo
x ∈ X, g · (h · x) = h · (g · x).

Definição 2.7 Um sistema dinâmico discreto (X,T ) é chamado de sistema
dinâmico homogêneo, se existe um sistema dinâmico (X,G) que comuta com
(X,T ) tal que (X,G) é minimal.

Um subconjunto A ⊂ X fechado é homogêneo com respeito a (X,T ), se
existe um sistema dinâmico (X,H) que comuta com (X,T ) tal que A ⊂ X é
minimal nesse sistema dinâmico.

Lema 2.11 Sejam (X,T ) um sistema dinâmico discreto e A ⊂ X um sub-
conjunto fechado homogêneo. Suponha que para todo ε > 0, existem x, y ∈ A,
n ∈ N tais que d(T nx, y) < ε. Então, para todo ε > 0, existem z ∈ A e m ∈ N
tais que d(Tmz, z) < ε.

Um conjunto A ⊂ X satisfazendo a hipótese é denominado conjunto ho-
mogêneo recorrente.

Prova: Supõe-se que (X,T ) é um sistema dinâmico e A ⊂ X é um subcon-
junto fechado homogêneo satisfazendo a hipótese. Primeiramente, provare-
mos que “para todo ε > 0 e todo u ∈ A, existem w ∈ X e m ∈ N tais que
d(Tmu,w) < ε”.

Dado ε > 0, seja (X,G) um sistema dinâmico que comuta com (X,T ) tal
que A ⊂ X é minimal em (X,G). Como A é fechado, segue que é compacto
e, portanto, é totalmente limitado. Disso segue que existe uma cobertura de

A por bolas abertas A =
n⋃
i=1

Bi de raios menores que ε/4. Por (A,G) ser

minimal, para cada i ∈ {1, . . . , n} , existe um conjunto finito Fi ⊂ G tal que⋃
g∈Fi

g−1 ·Bi = A.

Denota-se F :=
n⋃
i=1

Fi. Evidente que F é finito, então denotam-se F =

{g1, . . . , gN} e IN := {1, . . . , N}. Dados u, v ∈ A, tem-se que u ∈ Bk para
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algum k ∈ {1, . . . , n} e, também, que v ∈ g−1
j ·Bk para algum j ∈ IN . Logo

(gj · v) ∈ Bk e, então, d(gj · u, v) < ε/2.
Portanto míni∈INd(gi · u, v) < ε/2 para quaisquer u, v ∈ A.

Por outro lado, pela continuidade uniforme da ação, tem-se que existe
δ > 0 tal que, para todo i ∈ IN , d(gi · x, gi · y) < ε/2 , se d(x, y) < δ. Pela
hipótese, existem x, y ∈ A e m ∈ N tais que d(Tmx, y) < δ. Portanto, para
todo i ∈ IN ,

d(gi · (Tmx), gi · y) = d(Tm(gi · x), gi · y) < ε/2.

Temos, então, que, para todo u ∈ A,

míni∈INd(Tm(gi · x), u) ≤ míni∈IN (d(Tm(gi · x), gi · y) + d(gi · y, u))

< ε/2 + ε/2

= ε.

Ou seja, para todo ε > 0 e cada u ∈ A, existem m ∈ N e w := (gj ·x) ∈ A
tais que d(Tmw, u) < ε.

Logo a afirmação está provada.

Provemos a afimação do Lema.
Dado ε > 0, definem-se duas seqüências (zn) em A e (mn) em N induti-

vamente. Fixa-se z0 ∈ A. Pelo que foi provado, tem-se que existem z1 ∈ A e
m1 ∈ N tais que d(Tm1z1, z0) < ε/2.

Supõe-se, por indução, que foram tomados z0, . . . , zl e n1, . . . , nl tais que,
para todo i < j ≤ l, d(T ni+1+···+njzj, zi) < ε/2.

Pela continuidade de T , existe δ < ε/2 tal que, se d(z, zl) < δ, para todo
i < l, d(T ni+1+···+nlz, zi) < ε/2.

Por outro lado, segue da afirmação provada anteriormente, que existem
zl+1 ∈ A e nl+1 ∈ N tais que d(T nl+1zl+1, zl) < δ < ε/2. Portanto

d(T ni+1+···+nl+1zl+1, zi) < ε/2

para todo i < l. E, assim, ficam definidas as seqüências indutivamente.
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Pela compacidade deX, segue que existe uma subseqüência de (zn). Logo,
em particular, segue que existem zi, zj na seqüência tais que d(zi, zj) < ε/2.
Disso segue que

d(T ni+1+···+nj+1zj, zj) ≤ d(T ni+1+···+nj+1zj, zi) + d(zi, zj)

≤ ε/2 + ε/2

= ε.

�

Provaremos, na proposição seguinte, que se (X,T ) é um sistema dinâmico
discreto e A ⊂ X é um subconjunto homogêneo recorrente, então existe y ∈ A
recorrente em (X,T ). Isso é um resultado forte sobre recorrência que será
importante na demonstração do teorema de recorrência múltipla.

Proposição 2.12 Sejam (X,T ) um sistema dinâmico discreto e A ⊂ X um
subconjunto fechado homogêneo de X. Se para todo ε > 0, existem x, y ∈ A
e n ∈ N tais que d(T nx, y) < ε; então existem z ∈ A e uma seqüência de
inteiros nj → ∞ tal que T njz → z. Ou seja, existe um ponto recorrente
z ∈ A.

Prova: Seja (X,G) o sistema dinâmico que comuta com (X,T ) e que torna
A ⊂ X minimal. Define-se a função

f : A → R
x 7→ infn∈Nd(T nx, x).

Nota-se que um ponto x é recorrente se, e somente se, f(x) = 0. Pelo
lema anterior, temos que infx∈Af(x) = 0. Temos que f é semicontínua
superiormente. Afinal, dados α ∈ R e

y ∈ {x ∈ A : infn∈Nd(T nx, x) < α} ,

tem-se que infn∈Nd(T ny, y) = β < α. Logo existe m ∈ N tal que

d(Tmy, y) <
β + α

2
.
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Pela continuidade de Tm, segue que existe δ > 0 tal que Tm (B(y; δ)) ⊂
B(Tmy, α−β

2
). Ou seja, w ∈ B(y; δ) implica

d(Tmw,w) ≤ d(Tmy, Tmw) + d(Tmy, y) <
β + α

2
+
α− β

2
= α

Logo, em particular, w ∈ {x ∈M : infn∈Nd(T nx, x) < α}. Isso provou que
{x ∈ A : infn∈Nd(T nx, x) < α} é aberto (em A).

Pela semicontinuidade superior de f , segue que existe um ponto z ∈ A

em que f é contínua.
Supõe-se por absurdo que f(z) > 0. Disso segue que existem ε > 0 e uma

vizinhança aberta U ⊂ A de z tais que f(x) > ε para todo x ∈ U . Tem-se
pela minimalidade de A em (X,G) que existem g1, . . . , gk ∈ G tais que

A =
k⋃
i=1

g−1
i · U.

Pela continuidade da ação de G, tem-se que existe δ > 0 tal que d(x, y) <
δ implica d(gi · x, gi · x) < ε para todo i ∈ {1, . . . , k}.

Tem-se que f(y) < δ para algum y ∈ A, pois infx∈Af(x) = 0. portanto
existem ∈ N tal que d(Tmy, y) < δ. Toma-se j ∈ {1, . . . , k} tal que y ∈ g−1

j U
e, então, tem-se que

f(gjy) ≤ d(Tmgjy, gjy) = d(gjT
my, gjy) < ε.

Absurdo, pois gj · y ∈ U . Logo deve-se ter que f(z) = 0. �

O teorema abaixo é um forte resultado de recorrência (múltipla) devido a
Furstenberg e Weiss. Com ele, provaremos, futuramente, uma “versão dinâ-
mica” do teorema de Van der Waerden (que será tirado como conseqüência).

Teorema 2.13 (Furstenberg e Weiss) Seja F = {T1, . . . , Tk} uma famí-
lia de homeomorfismos comutativos agindo num espaço métrico compacto X.
Segue que existem x ∈ X e uma seqüência nj →∞ tais que

T
nj

i x→ x,∀i ∈ {1, . . . , k}
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Prova: Com efeito, prova-se por indução sobre k. Para k = 1, a afirmação
é o teorema 2.3.1. Supõe-se, por indução, que a afirmação seja verdadeira
para um k. Sejam F = {T1, . . . , Tk+1} uma família de homeomorfismos
comutativos agindo num espaço métrico compacto X. Seja (X,G) o sistema
dinâmico gerado por esses homeomorfismos. Ou seja, (X,G) = (X,Zk+1)
tal que (n1, . . . , nk) · x = T n1 · · ·T nkx. Toma-se um subconjunto minimal
(fechado) de (X,G) Y ⊂ X. Como Y é minimal em (X,G), em partiular,
é G-invariante. E, apartir de agora, considera-se o sistema dinâmico (Y,G).
Segue que Y ⊂ X é Ti-invariante (para todo i ∈ {1, . . . , k + 1} ). Além disso,
(Y,G) comuta com (Y, Ti) para todo i ∈ {1, . . . , k + 1}.

Sejam Y k+1 = Y × · · · × Y e ∆ ⊂ Y k+1 a diagonal de Y k+1. Tem-
se que (Y k+1, G), onde g · (x1, . . . , xk+1) = (g · x1, . . . , g · xk+1), é tal que
∆ ⊂ Y k+1 é um subconjunto minimal. Pode-se, então, definir T : Y k+1 →
Y k+1, onde T (x1, . . . , xk+1) = (T1x1, . . . , Tk+1xk+1). Segue que ∆ ⊂ Y k+1

é um subconjunto homogêneo fechado do sistema dinâmico (Y k+1, T ) (pois
(Y k+1, T ) comuta com (Y k+1, G)).

Prova-se que ∆ ⊂ Y k+1 é um subconjunto fechado homogêneo de (Y k+1, T )
que satisfaz a hipótese da proposição 2.12. Define-se Sj = TjT

−1
k+1 para

j ∈ {1, . . . , k}. Segue que
{S1, . . . , Sk}

é uma família de homeomorfismos comutativos agindo no espaço métrico
compacto Y . Pela hipótese de indução, segue que existem nj →∞ e z ∈ X
tais que

S
nj

i z → z,∀i ∈ {1, . . . , k} .

Logo, dado ε > 0, existe m0 ∈ N tal que

d(Siz, z) < ε,∀i ∈ {1, . . . , k} .

Disso segue que, tomando y = (T−m0
k+1 z, . . . , T

−m0
k+1 z) ∈ X,tem-se que

d(Tm0y, z∆) = d ((S1z, . . . , Skz, z), (z, . . . , z)) < ε.

Isso completou a prova de que ∆ satisfaz a hipótese da proposição 2.12 e,
portanto, existe um ponto recorrente (w, . . . , w) ∈ ∆ de (Y k+1, T ). Disso
segue que existe nj →∞ tal que

T nj(w, . . . , w)→ (w, . . . , w).
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Mas isso implica justamente que

T
nj

i w → w,∀i ∈ {1, . . . , k + 1} .

E isso completa a prova por indução. �



Capítulo 3

Teoria do Números

Este capítulo utilizará os conceitos e resultados provados até agora para de-
monstrar alguns resultados de teoria dos números. A maioria dos resultados
que serão demonstrados neste capítulo são antigos, mas suas demonstrações
usando apenas dinâmica topológica são bem mais novas.

Atualmente, muitos pesquisadores usam sistemas dinâmicos (teoria ergó-
dica) para encarar problemas atuais de combinatória e aproximação diofan-
tina. No entanto, as técnicas/resultados utilizados para isso estão fora do
escopo do texto. Este capítulo pretende apenas ilustrar o início dessa bonita
aplicação de Dinâmica Topológica à Teoria dos Números, com demonstrações
dinâmicas de teoremas famosos.

3.1 Sistemas de Kronecker

Esta seção será dedicada aos resultados de aproximação diofantina. Os sis-
temas dinâmicos estudados nesta seção são, em sua maioria, com espaços de
fase sendo grupos compactos metrizáveis. Serão, portanto, bastante utiliza-
dos resultados sobre grupos topológicos. A referência [8] apresenta todos esses
resultados sobre gupos topológicos que não estiverem explícitos no texto.

Definição 3.1 (Sistema de Kronecker) Seja (R,+) o grupo aditivo. Como
R é um grupo abeliano, todo subgrupo é normal. Em particular, Z é um
subgrupo normal, logo podemos considerar o grupo quociente R/Z. Por Z
ser fechado em R e por R ser um grupo metrizável, localmente compacto e

35
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separável, o grupo quociente R/Z, com a topologia quociente, é um grupo me-
trizável1. Fora isso, veremos mais adiante que Rn/Zn é, de fato, compacto e
metrizável (como conseqüências da proposição 3.1).

Os grupos (R/Z)n,Rn/Zn são grupos topológicos isomorfos (por isso, co-
locamos a igualdade (R/Z)n = Rn/Zn). Esse fato é conseqüência de um te-
orema sobre grupos topológicos: ver [8]. Portanto podemos indicar R/Z por
T e, então, Rn/Zn = (R/Z)n é denotado por Tn. Um elemento x+Z ∈ R/Z
será denotado por x = x + Z. Note que, x = y significa que existe k ∈ Z tal
que x = k + y.

Um sistema de Kronecker é um sistema dinâmico de translação com es-
paço de fase Rn/Zn.

Proposição 3.1 Sejam S = {x ∈ C : |x| = 1} com a operação de multipli-
cação usual dos complexos e a métrica euclidiana dE e T = R/Z.

Tem-se que S é um subgrupo de um grupo topológico (metrizável), logo é
topológico (metrizável). Define-se o seguinte epimorfismo:

ϕ : R→ S, ϕ(x) = e2πxi = cos(2πx) + i · sen(2πx).

Nota-se que o Kernel desse epimorfismo é o conjunto Z dos inteiros (pois
e2kπi = 1 se, e somente se, k ∈ Z).

Então, pelo primeiro teorema de isomorfismo, o homomorfismo

φ : R/Z→ S, f(x) = cos(2πx) + i · sen(2πx) = e2πxi.

é um isomorfismo. Temos que φ, além de ser um isomorfismo de grupos, é
um isomorfismo de grupos topológicos.

Prova: Precisa-se provar que φ é, de fato, um isomorfismo de grupos topo-
lógicos. Note que ϕ é um homomorfismo de grupos, pois é evidente que, para
qualquer k ∈ Z,

e(2π(x+y)k)i = e(2π(x+y))i

= e(2πx)i · e(2πy)i.

É fácil ver que ϕ é sobrejetiva. Basta ver que z = 2π · x “passa” por todo
o intervalo [0, 2π) e, portanto, passa por todos os valores possíveis da função
cos(z) + i · sen(z).

1Essa passagem é explicada na referência [8].
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Logo, temos que φ, como foi definida, é, de fato, um isomorfismo de grupos
(isso é conseqüência do denominado “Primeiro teorema do isomorfismo”).

Por ϕ ser uma aplicação contínua e aberta, existe um “primeiro teorema
de isomorfismo” para grupos topológicos que garante que φ é um isomorfismo
de grupos topológicos. Mas não assumiremos isso aqui (o “primeiro teorema
de isomorfismo” é apresentado na referência [8]).

Resta provar que φ é, de fato, um homeomorfismo. Seja P : R→ (R/N)
tal que P (x) = x. Tem-se que φ é contínua se, e somente se, (φ◦P ) o é.2 Note
que essa função (φ◦P ) é evidentemente contínua. Na verdade, se t : R→ C,
t(x) = 2πxi (linear, portanto contínua), segue que (φ ◦P ) = E ◦ t (onde E é
a função exponecial nos complexos). Logo φ é contínua. De forma análoga,
nota-se que φ−1 = P ◦ T ◦ L, onde T : C → R, T (x) = x/2πi é linear, L
é o logaritmo nos complexos. Como todas as três funções são contíinuas, a
prova de que φ−1 é contínua está completa.

Portanto φ é, de fato, um homeomorfismo. �

A proposição acima mostra que R/Z e S são indistinguíveis no ponto
de vista de grupos topológicos. Esse fato faz com que possamos confundir
os dois grupos sem causar prejuízo ao rigor. Tem-se, por exemplo, que S é
compacto (pois é homeomorfo à circunferência de raio 1 em R2), logo também
é compacto R/Z. Temos, então, que (R/Z)n = Rn/Zn é o produto de espaços
compactos e, portanto, é compacto. Outra propriedade “herdada” para R/Z é
o fato de ser metrizável (métrico). Com efeito, podemos induzir uma métrica
pelo isomorfismo de grupos topológicos (como será feito na definição abaixo).
E, então, (R/Z)n também é métrico (com uma das métricas do produto
(finito)).

Definição 3.2 Induzimos em R/Z uma métrica por φ. Ou seja, definimos
a métrica em R/Z como sendo: d(x, y) := dE(φ(x), φ(y)). Nota-se que, por
S ser metrizável, R/Z é metrizável também (como já havíamos previsto).

A métrica induzida é equivalente a uma métrica denominada a “métrica
do menor arco”:

d(x, y) = min {|x− y −m| : m ∈ Z} .
2Procurar por “topologia quociente” no [8].
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Note que, se x, y ∈ R, a distância d(x, y) = ε significa, em particular, que
existe m ∈ Z tal que |x− y −m| = ε.

Dados x, y ∈ R/Z ≈ S1, é fácil de verificar que d(x, y) é igual ao compri-
mento do menor arco determinado por x e y em S1 dividido por 2π. Ou seja,
dados x, y ∈ R, a distância d(x, y) é igual ao comprimento do arco ilustrado
na figura 3.1 abaixo.

Figura 3.1: Métrica do menor arco.

Quando não estiver explícito o contrário, a métrica em T será a a métrica
do menor arco. Fora isso, a métrica em Tn será a métrica do máximo em
relação à métrica do menor arco, ou seja, a métrica:

dM(x, y) = max {d(x1, y1), . . . , d(xn, yn)} .

3.1.1 Teorema de Kronecker

Esta subseção será dedicada à demonstração do teorema de Kronecker sobre
apoximação diofantina (teorema 0.2). Consegue-se um resultado um pouco
mais fraco que o teorema 0.2 apenas com o resultado 2.7. Ele é chamado de
“lema de Kronecker” . Esse lema é conseqüência direta do fato de que todos
os pontos num sistema dinâmico de translação são recorrentes. Com esse
lema, conseguimos toda a ferramenta necessária para demonstrar o teorema
0.2
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Lema 3.2 (Lema de Kronecker) Para todo α ∈ R e todo ε > 0, existem
n ∈ N e m ∈ Z tais que |nα−m| < ε.

Prova: Com efeito, toma-se o sistema dinâmico de Kronecker (R/Z, T ),
onde Tx = x + α. Pelo teorema 2.7, todo ponto desse sistema dinâmico
é recorrente. Em particular, o ponto 0 ∈ (R/Z) é recorrente. Logo, dado
ε > 0, existe n ∈ N tal que, com a métrica d do menor arco, d(nα, 0) < ε.
Isso quer dizer que existe m ∈ Z tal que |nα−m| < ε. �

Definição 3.3 (Rotação irracional do círculo) Um sistema dinâmico de
Kronecker, com espaço de fase R/Z, que é uma translação por r, onde r é
irracional, é chamado de rotação irracional do círculo. (E, quando r é raci-
onal, esse sistema é chamado de rotação racional).

Antes de demonstrar o teorema de Kronecker, convém fazer uma observa-
ção sobre rotações irracionais. Se (R/Z, T ) é um sistema dinâmico de rotação
irracional do círculo, segue que não existem pontos periódicos nesse sistema
dinâmico. A demonstração desse fato é simples. Supondo por absurdo que
x ∈ R/Z é um ponto periódico, segue que, para algum n ∈ N, n · x = x, ou
seja, existe k ∈ Z tal que x = x−k+nα. Disso segue que nα = k e, portanto,

α =
k

n
. Absurdo, pois contraria a hipótese de α ser irracional. Na verdade,

veremos que toda rotação irracional é um sistema dinâmico minimal.
Além disso, é fácil ver que todos os pontos de rotações racionais são

periódicos. Afinal, um sistema de rotação por p/q (p e q inteiros) é tal que
q ·x = x para todo x ∈ R/Z. E, então, fica fácil ver que toda rotação racional
é um exemplo de sistema dinâmico de translação não minimal.

Segue o enunciado e a demonstração do teorema de Kronecker 0.2.

Teorema 3.3 (Kronecker) Dados α ∈ (R−Q) e λ ∈ R. Para todo ε > 0,
existem m,n ∈ Z tais que |nα− λ−m| < ε.

Prova: Com efeito, dados α ∈ R − Q, λ ∈ R e ε > 0, toma-se o sistema
dinâmico de Kronecker (R/Z, T ), onde Tx = x + α. Pelo teorema 2.7, todo
ponto desse sistema dinâmico é recorrente. Em particular, o ponto 0 ∈ R/Z
é recorrente. Logo, dado ε > 0, existe n ∈ N tal que, com a métrica d do
menor arco, d(nα, 0) < ε . E, como α ∈ R − Q, 0 ∈ (R/Z) não é periódico,
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tem-se que 0 < d(nα, 0) < ε. Isso quer dizer que existe m ∈ Z tal que
0 < |nα−m| < ε. Se λ > 0 , pela propriedade arquimedianda da reta,
existe k = mín {q ∈ N : q |nα−m| ≥ λ}. Portanto k |nα−m| − λ < ε, pois,
caso contrário, (k−1) |nα−m| > k |nα−m|− ε ≥ λ . Dependendo do sinal
de nα−m, segue que 0 ≤ knα− km− λ < ε ou 0 ≤ −knα + km− λ < ε.

Caso λ < 0, toma-se k = mín {−q ∈ N : q |nα−m| ≤ λ} e a demonstra-
ção fica análoga. �

É fácil de perceber que o teorema de Kronecker acima implica, por exem-
plo, que as rotações irracionais são minimais (pois o teorema implica que a
órbita do elemento neutro de uma rotação irracional é densa).

3.1.2 Teorema de Hardy e Littlewood

Usando o teorema 2.10, será provado o teorema de Hardy e Littlewood e
um teorema que generaliza ele. O teorema 3.7 de Furstenberg poderia ser
provado antes do teorema de Hardy e Littlewood e, então, tirar esse teorema
como corolário. O teorema de Hardy e Littlewood será demonstrado primeiro
porque ele possui uma demonstração dinâmica mais simples.

Teorema 3.4 (Hardy e Littlewood) Para todo α ∈ R e todo ε > 0, exis-
tem k ∈ N e q ∈ Z tais que |k2α− q| < ε.

Prova: Seja (T, T ) o sistema dinâmico de Kronecker, onde Tx = x+α. Faz-
se o produto cruzado de (T, T ) via T pela aplicação φ : T→ T, φ(x) = 2x+α.
Obtém-se, assim, o sistema dinâmico (T2, S), onde

S(x, y) = (x+ α, 2x+ α + y).

Todo ponto no sistema dinâmico de Kronecker (T, T ) é recorrente (por ser
uma translação), logo, pelo teorema 2.10, todo ponto em (T2, S) é recorrente.
Em particular, (0, 0) é recorrente.

Provemos que Sn(0, 0) = (nα, n2α), ∀n ∈ N. Com efeito, para n = 1,
a afirmação é verdadeira. Supõe-se, por indução, que é verdadeira para m.
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Isso implica que

Sm+1(0, 0) = S(Sm(0, 0))

= S(mα,m2α)

= ((m+ 1)α, 2mα + α +m2α)

= ((m+ 1)α, (m2 + 2m+ 1)α)

= ((m+ 1)α, (m+ 1)2α).

Ou seja, implica que a afirmação é verdadeira para m + 1. E, portanto,
está completa a prova por indução de que Sn(0, 0) = (nα, n2α).

Como (0, 0) é recorrente, dado ε > 0, segue que existe k ∈ N tal que
dM((0, 0), (kα, k2α)) < ε. Isso, em particular, implica que

d(0, k2α) < ε.

E isso quer dizer que existe q ∈ Z tal que |k2α− q| < ε. �

Antes de provar o teorema 3.7 de Furstenberg, será definido um sistema
dinâmico denominado “Sistema de Furstenberg”. Será provado que esse sis-
tema é recorrente (todos os pontos são recorrentes).

Definição 3.4 Para cada d ∈ N, seja Td = (R/Z)d o toro d-dimensional.
Um sistema de Furstenberg é um sistema (Td+1, Fd), onde

Fd(x0, x1, . . . , xd) = (x0, x1 + x0, . . . , xd + xd−1).

É interessante observar que o sistema de Furstenberg (T2, F1), ilustrado
na figura 3.2, é tal que, dado (z0, z1) ∈ T2,

F n
1 (z0, z1) = (z0, nz0 + z1)

= (z0, R
n
z0
z1),

ou seja, identidade na primeira coordenada e rotação na segunda coordenada.
Será provado que todo sistema dinâmico de Furstenberg é recorrente.

Note que isso é fácil de verificar para o caso do sistema dinâmico (T1, F0), pois
F0 é a aplicação identidade em R/Z ≈ S1. Além disso, pela observação do
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Figura 3.2: Sistema de Furstenberg para d = 1.

parágrafo anterior, é fácil verficar que a afirmação é verdadeira para (T2, F1)
também.

A idéia da demonstração do caso geral é fazer indução sobre d. E, para
completar esse argumento de indução, será usado o fato de que (Td, Fd−1)
é um produto cruzado de (Td+1, Fd) via o grupo R/Z ≈ S1. Apenas para
tornar a demonstração da proposição 3.6 mais concisa, será provado isso no
lema abaixo.

Lema 3.5 Sejam (Td+1, Fd) e (Td, Fd−1) sistemas dinâmicos de Fursten-
berg, onde d ∈ N qualquer. Segue que (Td+1, Fd) é um produto cruzado de
(Td, Fd−1) via R/Z.

Prova: Para provar o lema, basta verificar que (Td+1, Fd) é o produto cru-
zado de (Td, Fd−1) via R/Z pela aplicação contínua φ : Td → S1, onde
φ(z0, . . . , zd−1) = zd−1. De fato,

Fd(z0, . . . , zd) = (z0, z0 + z1, . . . , zd−1 + zd)

= (Fd−1(z0, . . . , zd−1), zd−1 + zd)

= (Fd−1(z0, . . . , zd−1), φ(z0, . . . , zd−1) + zd)

�
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Proposição 3.6 Todo sistema dinâmico de Fursteberg (Td+1, Fd) é recor-
rente (ou seja, todos os pontos de um sistema de Furstenberg ão recorrentes).

Prova: Como foi observado anteriormente, o sistema dinâmico (Td+1, Fd) é
recorrente, quando d = 0 (pois, nesse caso, a aplicação F0 é a aplicação iden-
tidade em S1). Prova-se, então, por indução, que a afirmação é verdadeira
para qualquer d natural.

A hipótese de indução é que o sistema de Furstenberg (Td, Fd−1) é recor-
rente. Como (Td+1, Fd) é um produto cruzado de (Td, Fd−1) via R/Z, segue,
pelo teorema 2.10, que (Td+1, Fd) é recorrente. E, portanto, isso completa a
prova por indução da proposição. �

Com esse resultado que diz que todo sistema de Furstenberg é recorrente,
estamos prontos para provar o mais forte resultado de Aproximação Diofan-
tina que será apresentado neste texto: o teorema 0.4 de Furstenberg. Seguem
o enunciado a demonstração desse teorema.

Teorema 3.7 (Teorema de Furstenberg ) Seja p(x) um polinômio com
coeficientes reais tal que p(0) = 0. Então, ∀ε > 0, existem k ∈ N e q ∈ Z
tais que

|p(k)− q| < ε.

Prova: Com efeito, seja p(x) um polinômio de grau d satisfazendo a hipótese.
Define-se, então, uma lista de d+ 1 polinômios da seguinte forma:

pd(x) := p(x)

pd−1(x) := pd(x+ 1)− pd(x)
...

p1(x) := p2(x+ 1)− p2(x)

p0(x) := p1(x+ 1)− p1(x).

É fácil verificar que o polinômio pk(x) dessa lista tem grau k, para qual-
quer k = 0, . . . , d. Em particular, p0 é constante (grau 0).

O toro Td+1 é munido da métrica do máximo em relação à métrica do
menor arco em R/Z. Toma-se, então, o sistema dinâmico de Furstenberg
(Td+1, Fd). Verifica-se que

F n
d (p0(0), . . . , pd(0)) = (p0(n), . . . , pd(n)),
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afinal, tem-se a seguinte relação de recorrência

Fd(p0(n), . . . , pd(n)) = (p0(n), p0(n) + p1(n), . . . , pd−1(n) + pd(n))

= (p0(n+ 1), p1(n+ 1), . . . , pd(n+ 1)).

Pelo resultado 3.6, tem-se que (p0(0), . . . , pd(0)) é recorrente no sistema
dinâmico (Td+1, Fd). E isso implica, em particular, que existe n ∈ N tal que a
distância entre (p0(0), . . . , pd(0)) e F n

d (p0(0), . . . , pd(0)) é menor que ε. Mas,
pela métrica do máximo, isso implica que

mínm∈Z |pd(n)− pd(0)−m| < ε.

E, como pd(0) = 0 e pd(n) = p(n), isso implica que existe m ∈ Z tal que
|p(n)−m| < ε. �

O teorema precedente é mais forte que o teorema de Hardy e Littlewood
(teorema 3.4), pois aquele se trata apenas de um caso particular: quando
o polinômio tem grau 2. Note, portanto, que o teorema de Hardy pode ser
colocado como corolário do teorema precedente. Existe um outro corolário
desse teorema. Na verdade, é corolário da demonstração do teorema e está
enunciado abaixo.

Corolário 3.7.1 Sejam p1(x), p2(x), . . . , pk(x) polinômios tais que pj(0) = 0
para todo j ∈ {1, . . . , k}. Então, para todo ε > 0 existem inteiros n,m1, . . . ,mk ∈
Z tais que

|pj(n)−mj| < ε,∀j ∈ {1, . . . , k} .

Prova: Com efeito, basta tomar o polinômio

p(x) = (p1(x), . . . , pk(x)).

Em vez de tomar o sistema dinâmico (Td+1, Fd) (onde d é o grau do polinô-
mio), toma-se o sistema dinâmico ((Tk)d, Fd) (onde d é o grau do polinômio
de maior grau entre p1(x), . . . , pk(x) ). Por uma argumentação análoga, to-
dos os pontos desse sistema dinâmico são recorrentes. Disso e do fato de que
F n
d (p(0)) = p(n) segue a tese do corolário. �
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3.2 Sistemas Dinâmicos Simbólicos

Nesta seção, trataremos de dinâmica simbólica. Será com sistemas dinâmi-
cos simbólicos que demonstraremos o teorema de Van Der Waerden. Antes
de continuarmos, falaremos um pouco sobre o que é um sistema dinâmico
simbólico e como é seu espaço de fase.

Um alfabeto de k ∈ N letras é um conjunto de cardinalidade k. Seja Λ
um alfabeto de k letras munido da topologia discreta. Por Λ ser evidente-
mente compacto, segue, pelo teorema de Tychonoff, que Ω = ΛZ, munido da
topologia produto, é um compacto. Um ponto x ∈ Ω pode ser escrito como
uma função

x : Z → Λ

k 7→ xk

Para cada “coordenada” j ∈ Z, tem-se a aplicação projeção πj : ΛZ → Λ,
onde πj(x) = xj. A topologia produto torna todas essas aplicações contínuas,
além disso ela é menor topologia que satisfaz isso.

A topologia produto num espaço topológico Ω = ΛZ é caracterizada pelo
fato de que “ uma aplicação f : M → Ω é contínua se, e somente se, cada uma
de suas coordenadas (πi ◦ f) : M → Λi é contínua”. De fato, Ω é metrizável,
afinal é produto enumerável de espaços metrizáveis.

Lema 3.8 Seja Ω = ΛZ. Se x 6= y em Ω, define-se

d(x, y) =
1

1 +min {|k| : xk 6= yk}
,

e d(x, x) = 0. Isso é uma métrica que induz a topologia produto em Ω.

Prova: O fato de d ser uma métrica é de fácil verificação.
Seja ρi a métrica zero-um em Λi, ou seja, ρi(x, x) = 0 e ρi(x, y) = 1, se

x 6= y.
Com efeito, supõe-se f : M → Ω contínua. Dada uma projeção πi : Ω→

Λi qualquer, tem-se que, dado ε > 0, existe δ > 0 tal que

d(x, y) < δ =⇒ d(f(x), f(y)) <
1

2 |i|
=⇒ mín {|k| : f(x)k 6= f(y)k} > |i|
=⇒ ρi(f(x)i, f(y)i) = 0 < ε
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Ou seja, foi provado que (πi ◦ f) é contínua.
Reciprocamente, se (πi ◦ f) é contínua para todo i ∈ Z, segue que, dado

ε = 1/no > 0, existem δ0, δ1, δ−1, . . . , δno , δ−no > 0 tais que

d(x, y) < δ0 =⇒ π0(f(x)) = π0(f(y))

d(x, y) < δ1 =⇒ π1(f(x)) = π1(f(y))

d(x, y) < δ−1 =⇒ π−1(f(x)) = π−1(f(y))

.

.

.

d(x, y) < δno =⇒ πno(f(x)) = πno(f(y))

d(x, y) < δ−no =⇒ π−no(f(x)) = π−no(f(y))

Logo d(x, y) < mín {δ−n0 , δn0 , δ−n0+1, δn0−1, . . . , δ0} implica

d(f(x), f(y)) <
1

1 + |no|
< 1/no = ε.

Isso completa a prova da recíproca. �
Note que, com a métrica definida no lema 3.8, d(x, y) ≤ 1, ∀x, y ∈ Ω.

Definição 3.5 Seja T : Ω → Ω, Tx = y, onde yk = xk+1. A aplicação T é
chamada de função-deslocamento no alfabeto Λ, ou “shift” no alfabeto Λ. T é
um homeomorfismo. Chamamos o sistema dinâmico (Ω, T ) de deslocamento
(de dois lados) em k símbolos (e ele é um sistema dinâmico simbólico).

Prova: Provemos que T é um homeomorfismo.
Dado i ∈ Z, tem-se que πi◦T = πi+1 é, evidentemente, contínua. Portanto

ficou provado que T é contínua. Analogamente, dado i ∈ Z, temos que
πi ◦ T−1 = πi−1 é contínua. Portanto T é homeomorfismo.

�

3.2.1 Teorema de Van der Waerden

Para provar o teorema de Van der Waerden 0.5, o primeiro passo é fazer
uma “tradução” desses problemas de coloração para o contexto de sistemas
dinâmicos. O lema 3.9 é responsável por essa tradução.
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Aqui, será usado freqüêntemente as terminologias estabelecidas na página
6. O sistema dinâmico que será tratado aqui é o sistema dinâmico simbólico
estabelecido no início desta seção. O principal resultado ustilizado nesta
subseção é aquele provado na seção de Recorrência Múltipla do capítulo
Recorrências3.

Lema 3.9 (Furstenberg) Dado um sistema dinâmico (X,T ) qualquer. Para
todo x ∈ X, todo ε > 0 e todo k ∈ N, existem m ∈ Z e n ∈ N tais que{

Tmx, Tm+nx, . . . , Tm+nkx
}

tem diamêtro menor que ε.

Prova: Toma-se um sistema dinâmico (X,T ) qualquer. Dados k ∈ N, x ∈ X
e ε > 0, toma-se Y = Z · x. Por Y ser o fecho de um T -invariante, segue que
Y é invariante.

Define-se Ti := T i. Logo {T1, . . . , Tk} é uma família de homeomorfismos
comutativos agindo em Y . Logo, pelo teorema 2.13, segue que existem y ∈ Y
e nj →∞ tais que

T
nj

1 y → y, . . . , T
nj

k y → y.

Logo existe n ∈ N tal que T n1 y, . . . , T nk y ∈ B(y; ε/8).

Pela continuidade uniforme de T n1 , T n2 , . . . , T nk , segue que existe δ > 0 tal
que

d(a, b) < δ =⇒ mín {d(T n1 a, T
n
1 b), . . . , d(T nk a, T

n
k b)} < ε/8.

Por y ∈ Y = Z · x, segue que existe m ∈ Z tal que d(Tmx, y) <
mín {δ, ε/8}. Logo

d(Tmx, y), d(T n1 y, T
n
1 (Tmx)), . . . , d(T nk y, T

n
k (Tmx)) < ε/8.

Mas isso quer dizer que

d(y, Tmx), d(T ny, Tm+nx), d(T 2ny, Tm+2nx), . . . , d(T kny, Tm+knx) < ε/8.

Tem-se que, para qualquer q ∈ {0, 1, . . . , k}, vale

d(y, Tm+nqx) ≤ d(Tm+nqx, T nqy) + d(T nqy, y) < ε/8 + ε/8 = ε/4.

3Ver seção 2.4
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Portanto Tmx, . . . , Tm+nkx ∈ B[y; ε/4]. Ou seja, o diâmetro do conjunto{
Tmx, . . . , Tm+nkx

}
é menor que ε.

�

Segue, abaixo, o enunciado e a demonstração do teorema de Van de Wa-
erden 0.5.

Teorema 3.10 (Van der Waerden) Se Z = C1∪C2∪ · · ·∪Cr é uma par-
tição finita, então, para algum j ∈ {1, 2, . . . , r}, Cj contém uma progressão
aritmética finita de tamanho arbitrário. Ou seja, toda coloração finita de Z
contém uma P.A. de tamanho arbitrário finito monocromática.

Prova: Dada uma coloração

Z = C1 ∪ · · · ∪ Cr

de r cores, define-se o sistema dinâmico (Ω, T ) de deslocamento4, onde Ω =
ΛZ = {1, . . . , r}Z. Mune-se Ω da métrica d definida em 3.5. Note que essa
métrica tem a propriedade de

d(x, y) < 1⇐⇒ x0 = y0.

Toma-se o ponto x ∈ Ω tal que xt = i, se t ∈ Ci. Pelo lema 3.9, dado um
tamanho k ∈ N, existemm ∈ Z e n ∈ N tais que

{
Tmx, Tm+nx, . . . , Tm+nkx

}
tem diâmetro menor que 1. Pela métrica, segue que

(Tmx)0 = · · · = (Tm+nkx)0.

Ou seja, xm = · · · = xm+nk. Isso quer dizer que

{m, . . . ,m+ nk} ⊂ Cj,

onde j := xm ∈ {1, . . . , r}. �

Observação: Um fato interessante é que o lema 3.9 é uma versão dinâmica
do teorema de Van der Waerden: ele é equivalente ao teorema de Van der
Waerden. Para provar o lema 3.9 usando o teorema de Van der Waerden,

4Definido em 3.5.
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basta tomar uma partição finita de X =
r⋃
i=1

Fi por conjuntos fechados de

diâmetro menor que ε5. Segue que Z =
⋃r
i=1Ci, onde

Ci = {t ∈ Z : t · x ∈ Fi} ,

é uma partição de Z. Logo, pelo teorema de Van der Waerden, para todo k ∈
N, existemm ∈ Z e n ∈ N tais que {m,m+ n, . . . ,m+ nk} está inteiramente
contido em algum Cj. Ou seja,{

Tmx, . . . , Tm+nkx
}
⊂ Fj,

donde segue a tese do lema 3.9.

5Essa partição existe por X ser compacto
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Apêndice A

Transitividade Topológica

Nessa seção, será discutido uma noção ligada às noções de conjuntos minimais
e de recorrência: a de transitividade topológica.

Definição A.1 (Transitividade topológica) Seja (X,Z) um sistema di-
nâmico. (X,Z) é denominado topologicamente transitivo se existe algum
x ∈ X tal que

Z · x = X.

Proposição A.1 Seja (X,Z) um sistema dinâmico. As seguintes afirmações
são equivalentes:

1. (X,Z) é topologicamente transitivo;

2. Se U ⊂ X é um aberto não-vazio invariante, então U é denso em X;

3. Se U, V ⊂ X são abertos não-vazios, então existe n ∈ Z tal que

n · U ∩ V 6= ∅.

Prova: 1⇒ 2: Assumindo 1, toma-se x ∈ X tal que Z · x = X. Logo, dado
um aberto U ⊂ X, existe n ∈ Z tal que n · x ∈ U . Como U é invariante,
segue que

Z · x = Z · (n · x) ⊂ U.

Portanto U ⊃ Z · x = X. Isso completa a prova de que U = X e, portanto,
completa a prova de que 1 implica 2.

51
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2⇒ 3: Sejam U, V abertos não-vazios de X. Segue que Z ·U é um aberto
invariante não-vazio de X. Logo, pela hipótese, Z · U é denso. Portanto

Z · U ∩ V 6= ∅.

Ou seja, existe n ∈ Z tal que n · U ∩ V 6= ∅.
3 ⇒ 1: Um espaço métrico compacto satisfaz o segundo axioma da enu-

merabilidade, ou seja, possui uma base enumerável. Toma-se uma base enu-
merável {Vj}j∈N. Então, para cada j ∈ N , Z · Vj é aberto e, então, (pela
hipótese) tem interseção não-vazia com todo aberto de X. Ou seja, Z · Vj é
denso em X. Portanto

I =
∞⋂
j=1

Z · Vj

é uma interseção enumerável de abertos densos. Pelo teorema de Baire, isso
é não vazio. Toma-se x ∈ I. Tem-se que, para todo j ∈ N, existe n ∈ Z tal
que n · x ∈ Vj. Portanto a órbita de x tem interseção não vazia com todo
aberto básico, ou seja, é densa em X. Isso completa a prova de que (X,Z) é
topologicamente transitivo. �

A proposição a segur mostra uma condição suficiente para que um sistema
dinâmico transitivo seja minimal.

Proposição A.2 Seja (X,T ) um sistema dinâmico transitivo (onde X pos-
sui uma métrica d). Se existe uma métrica equivalente a d tal que T é uma
isometria, então (X,T ) é minimal.

Prova: Com efeito, sejam (X,T ) um sistema dinâmico transitivo (com a
métrica d ) e φ uma métrica equivalente à d tal que T é uma isometria.

Toma-se x ∈ X tal que Z · x = X. Dado y ∈ X, provemos que sua órbita
é densa em X. Dados z ∈ X e ε > 0, segue que existem n,m ∈ Z tais que
d(m · x, y) < ε

2
e d(n · x, z) < ε

2
. Portanto

d(z, (n−m) · y) ≤ d(z, n · x) + d(n · x, (n−m) · y)

= d(z, n · x) + d(m · x, y)

< ε

Isso completa a prova da proposição. �
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