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2 SUMARIO

Prefacio

Diante da caréncia de textos introdutorios a “dinamica topologica” em por-
tugués, este texto se propoe a dar uma introducao ao assunto em nivel ele-
mentar.

O grande mérito da “Dinamica topologica” é a quantidade de aplicagoes
em diversas areas da matematica. Entao nada é mais natural do que motivar
seu estudo mediante uma dessas possiveis aplicagoes. Por isso, neste texto,
foram escolhidos como motivacao alguns resultados em Teoria dos Numeros
e Combinatoria.

Essas aplicagoes foram escolhidas por dois motivos. Um deles é a natu-
reza elementar dos resultados a serem demonstrados, tornando assim o livro
mais acessivel aos graduandos. O outro é que as nog¢oes necesséarias para
demonstrar tais resultados sao razoaveis para se apresentar num primeiro
contato com a teoria.

Os pré-requisitos do assunto tratado neste texto que nao sao comumente
tratados num curso de graduagao regular sdo trabalhados na referéncia [8].

A primeira versao deste texto foi escrita como parte do meu trabalho
de Iniciagao Cientifica pela UnB, intitulada “Introdugao & Dinamica Topo-
logica e Aplicagoes & Teoria dos Numeros”, no periodo de Agosto/2009 -
Agosto/2010. Essa Iniciagao Cientifica recebeu apoio do CNPq e foi orien-
tada pelo professor Mauro Moraes Alves Patrao. Para mais detalhes sobre
a iniciac¢ao, o relatorio é a referéncia [9], disponibilizada na pagina do grupo
de Teoria de Lie e Aplicacoes, cujo endereco é

http:/ /teoriadelie.wordpress.com /

Resolvi colocar alguns merecidos agradecimentos aqui. Primeiramente,
agradeco as pessoas que foram determinantes para completar esse trabalho:
meus pais e minhas irmas, pelo apoio, suporte, dedicagao e incentivo durante
todos momentos e decisoes.

Agradeco ao professor Mauro Patrao pela paciéncia e pela dedicacao na
orientacao durante o trabalho de Iniciacao Cientifica. E aos professores que
deram momentos de conversas que causaram motivagao e idéias em matemé-
tica. Em especial, ao professor Salahoddin Shokranian pela disponibilidade
para freqiiéncia nessas conversas frutiferas.

Por fim, agradego aos amigos e colegas que me incentivaram e ajudaram
durante a realizacao desse trabalho.



Capitulo 0

Introducao

Nesse capitulo, o objetivo é familiarizar o leitor com o contexto onde a Dina-
mica Topologica esté inserida e, por fim, familiarizar o leitor com a disposi¢ao
e os objetivos do texto.

0.1 Dinamica Topolégica

No sentido classico, um sistema dinadmico é um sistema de equacoes dife-
renciais com condicoes suficientes impostas para assegurar continuidade e
unicidade das solugoes. Dessa forma, o sistema dindmico define um fluxo no
espago. Desde Poincaré, muitos resultados de interesse de sistemas dinami-
cos foram obtidos sem a hipotese de que esse fluxo tenha vindo de equagoes
diferenciais. A extensao desses resultados de fluxos para grupos de transfor-
magoes mais gerais marcou o comeco do desenvolvimento da teoria conhecida
como “Dinamica Topologica”.

Desde entao, a Dinamica Topologica tomou “vida” e importancia proprias.
Dentro dela surgiram novos problemas e questionamentos (alguns resolvidos
e outros nao). Ao tomar essa “vida propria”, a Dinamica Topologica ampliou
cada vez mais a sua area de aplicabilidade. Ela acabou, entao, se revelando
uma ferramenta bastante 1til e poderosa na investigacao de problemas de
varias areas da Matematica e, conseqiiéntemente, em areas afins.

Dentre as aplicagoes mais conhecidas, estao as aplicacoes em Analise Fun-
cional, em Equacoes Diferenciais, em Topologia, em Teoria dos Numeros
(principalmente em Aproximagao Diofantina) e em Combinatoria (principal-
mente na Teoria de Ramsey).



4 CAPITULO 0. INTRODUCAO

0.2 Teoria dos Nuimeros

Nessa subsecao, serao apresentados os resultados da Teoria dos Ntmeros e
da Combinatoéria que serao tratados neste texto.

0.2.1 Aproximagao diofantina

O problema de aproximar nimeros reais usando nimeros racionais é o princi-
pal ponto dos resultados diofantinos que, aqui, serao tratados. Esse assunto
é chamado de “aproximacao diofantina”. Um dos exemplos mais simples foi
provado por Kronecker (1823-1891), referéncia [7].

Esses resultados de teoria dos ntimeros tem aproximadamente 100 anos,
mas as demonstragoes dinadmicas usam técnicas de argumentagao muito mais
recentes, desenvolvidas por Hillel Furstenberg (1935- ) , referéncias [3] e [4].

Lema 0.1 (Lema de Kronecker (1857)) Para todo e >0 e o € R, ewis-
temm € Z en € N tais que Ina — m| < €.

A densidade dos racionais na reta diz que, para todo « real e todo € > 0,
existem m € Z e n € N tais que |[naw — m| < ne. O resultado de Kronecker é
um pouco mais forte, pois diz que esses n € N e m € Z podem ser escolhidos
de tal forma que

|Ina —m| < e.
Note que o lema de Kronecker implica na densidade dos racionais. Porém
nao hé como demonstrar o lema de Kronecker partindo apenas da densidade
dos racionais (ou seja, esses dois resultados ndo sdo equivalentes). Usando
esse primeiro resultado em aproximacao diofantina, sera provado um outro
teorema de Kronecker que generaliza o anterior.

Teorema 0.2 (Teorema de Kronecker (1857)) Dados @ € (R—Q) e
A € R. Para todo € > 0, existem m,n € Z tais que [nac — X\ —m| < e.

Segue, abaixo, um teorema devido a Hardy (1877-1947) e a Littlewood
(1885-1977). Esse teorema é, de certa forma, uma generalizagdo do lema
de Kronecker 0.1, pois diz que o natural multiplicando a pode ser escolhido
sendo quadrado perfeito. Ou seja, para todo @ € R e todo € > 0, existem
m € Z en € N tais que |[n?a —m| < e. A demonstragao original desse
resultado estd no contexto de teoria analitica dos ntmeros. No entanto,
aqui, a demonstracao serd puramente dinamica.
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Teorema 0.3 (Hardy e Littlewood) Para todo o € R e todo € > 0, exis-
temk € Z en €N tais que [n*a —m| < e.

Um tltimo resultado de Aproximacao Diofantina que sera provado no
livro é o teorema de Furstenberg. Ele implica, em particular, que poderiamos
tomar o natural n € N sendo um cubo perfeito, ou coisas ainda muito mais
gerais.

Teorema 0.4 (Teorema de Furstenberg (1967)) Seja p(z) um poliné-
mio de coeficientes reais tal que p(0) = 0. Para qualquer € > 0, existem
n €N em €Z tais que |p(n) —m| < e.

Um exemplo de aplicagao do teorema de Furstenberg é tomar

p(z) = mz? + ™2
Para qualquer € > 0, segue do teorema de Furstenberg que existem n € N e
m € 7 tais que
|7m23 +e™n? — m| < €.

Nota-se que o teorema de Furstenberg implica no teorema de Kronecker
0.1. Para mostrar isso, dado o € R, bastava tomar o polindémio p(z) = az. E,
entdo, seguiria que, dado € > 0, existem n € N e m € Z tais que |an — m| =
|p(n) —m| < e. Além disso, o teorema de Furstenberg implica no Teorema
de Hardy Littlewood: o argumento é analogo, tomando p(z) = az?.

E possivel, também, usar o resultado de Furstenberg para encontrar ver-
soes parecidas (generalizadas) do Teorema de Hardy-Littlewood. Como, por
exemplo, seguiria imediatamente do Teorema de Fursteberg que, para todo
a € R, todo k € Netodoe >0, existem n € Nem € Z tais que

‘nka — m‘ < E.

0.2.2 Teoria de Ramsey

O resultado combinatério aqui trabalhado é da area chamada Teoria de
Ramsey. Essa teoria trabalha com a idéia de que um espago com algum
tipo de propriedade, quando dividido em um ntmero finito de “partes”, tera
ao menos um de seus “pedacos” ainda possuindo esta propriedade. Esse es-
paco pode ser um grupo, um espaco vetorial ou até mesmo grafos. Evidente
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que nem todo par espago-propriedade satisfaz essa condicao de Ramsey. En-
tao a Teoria de Ramsey estuda os tipos de espago-propriedade que satisfazem
essa conservacao mediante particoes finitas. Sob outra perspectiva, pode-se
dizer que problemas da Teoria de Ramsey trabalham com a seguinte per-
gunta: “Dada uma estrutura com uma propriedade X, quantos elementos
dessa estrutura sao necesséarios para garantir a conservacao da propriedade
X77. Ou ainda, “o quao “grande” deve ser a estrutura original para que, ao
ser particionado em 7 conjuntos, asseguremos que em ao menos um conjunto
desse tipo de particao esteja mantida uma dada propriedade que nos seja
interessante?”.

Um exemplo de resultado elementar da Teoria de Ramsey é o conhecido
“Principio da Casa dos Pombos” que diz que se A é um conjunto com cardina-
lidade maior que n, entao uma particao {Xi}z'e{l,z,s,...,n} de A em n conjuntos
é tal que, para ao menos um i € {1,2,3,...,n}, a cardinalidade de X; é
maior que 1.

A bela conexao entre a dindmica e a teoria de Ramsey foi desenvolvida
por Furstenberg e a conexao entre a dinamica topolégica e a combinatoria
foi elaborada por Furstenberg e Weiss. A Dinamica Topologica e a Teoria
ergddica vém sendo extensamente utilizada para demonstrar resultados em
Teoria de Ramsey. Nesse livro, sera demonstrado um dos resultados mais
famosos dessa teoria, a saber o teorema de Van der Waerden, cujo enunciado
preciso sera apresentado a seguir.

Definicao 0.1 Seja X um conjunto. Uma parti¢ao finita de X é uma familia
de conjuntos {C1,...,Cy,} que satisfaz:

° CiﬂCj:Q), 8€i7éj,'

i=1

Na terminologia da combinatoria, uma parti¢ao finita é denominado por “uma
coloragao finita”. E dois elementos que pertencem a um mesmo conjunto da
particao sao chamados monocromdticos.

Se o conjunto dos numeros naturais forem coloridos com duas cores (ou
seja, se o conjunto dos naturais for particionado por dois conjuntos), o con-
junto dos ntimeros colorido com uma das cores preserva muitos “padroes” dos
naturais. Quando usamos um niimero finito de cores, isso também ocorre.
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Uma P.A. finita de tamanho r + 1 € N é um conjunto do tipo
{m,m+n,....m+rn},

onde n € N e m € Z. Segue o enunciado do Teorema de Van der Waerden,
referéncia [11].

Teorema 0.5 (Van der Waerden (1927)) Se Z = C;, UCy U ---UC, é
uma particdo finita, dado r € N, entdo, para algum j € {1,2,....r}, C}
contém uma progressao aritmética de tamanho r. Ou seja, toda coloracao
finita de Z contém uma P.A. de tamanho arbitrdrio finito monocromdtica.
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Capitulo 1

Dinamica Topolbgica

A dindmica topologica estuda as propriedades topoldgicas dos sistemas diné-
micos. Em dindmica topologica, um sistema dinamico ¢ um grupo topolégico
agindo (continuamente) num espago topologico. Neste texto, todos sistemas
dindmicos tém espago de fase compacto metrizavel. Seguem as defini¢oes
precisas.

Defini¢ao 1.1 (Sistema Dindmico) Sejam X um espago metrizavel com-
pacto e (G, x) um grupo topoldgico. Um sistema dindmico é um par (X, ¢),
onde ¢ € uma aplicagao continua

b GxX —X
(9.) —g-x

que satisfaz as sequintes propriedades:
1. See e G € o elemento neutro de G, e-x =x, Vo € X;
2. Dados g,h € G quaisquer e v € X qualquer, g- (h-x)=(g-h)-x.

O espaco X € denominado o espaco de fase do sistema dindmico; o grupo G
€ denominado o grupo de fase; e ¢ a projecao de fase.

Um sistema dindmico também pode ser denotado pela tripla (X, G, ¢) ou
pelo par (X, G).

Convém observar que, dado um sistema dinamico (X, G), tem-se que, para
todo g € G, a aplicagao g : X — X, onde g(z) = ¢z, ¢ um homeomorfismo.

9
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Normalmente, em dinamica topoloégica, os sistemas dinamicos tém um
dos dois grupos de fase: Z ou R. Quando o grupo de fase é R, o sistema di-
namico é denominado continuo e ele esté associado a uma equacgao diferencial
ordinaria. Quando o grupo de fase é Z, o sistema dinamico é denominado
discreto.

Nesse livro, sistemas dinamicos discretos serao amplamente tratados.
Portanto convém fazer algumas observacoes mais precisas a esse respeito.
Dado um sistema dinamico (X, Z), existe um tnico homeomorfismo 7" : X —
X tal que, para todo n € Z, n-x = T"x (onde T"z é a n-ésima iterada de
T em z). Note que, para isso, basta tomar 7' : X — X tal que Tx =1 - x.
Temos que 7' ¢ um homemorfismo e é facil notar que n-x = T"x. Reciproca-
mente, dado um homeomorfismo 7" : X — X, onde X é compacto metrizével,
é facil definir um sistema dindmico discreto (X, Z) fazendo n - x = T"x.

Logo, diante das observacoes, para sistemas dinamicos discretos, adota-
se, também, a notagao (X,7T'), onde X é o espago de fasee T': X — X é o
homeomorfismo tal que n -z = T"x (para todo n € Z).

1.1 Linguagem Basica

Nesta secao, apresentaremos alguns exemplos de sistemas dinamicos, para
que possamos, motivados pelos exemplos, introduzir certas nogoes importan-
tes da Dinamica Topoldgica, como pontos periddicos ou fixos. A nogao de
orbita nos dé base para desenvolver o resto da linguagem basica dos sistemas
dindmicos.

Definigao 1.2 (Orbita de um ponto) Seja (X, G, ¢) um sistema dindmico.
Dado um ponto x € X, o conjunto

G-x={g-x:9€G}
€ chamado de orbita do ponto x.

Exemplo 1.2.1 Seja S' = {u € C: |u| =1}. Tem-se que S' é compacto
metrizdvel. Define-se o homeomorfismo Ry : ST — S, onde Ryjpx = e™x.
E, entdo, temos o sistema dindmico (S*, Rij2). Tem-se que a orbita de 1 €
Z-S'={1,e"}.

Esse sistema dindmico € ilustrado na figura 1.1.
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Rix

Figura 1.1: Sistema de rotagao por m radianos.

O tipo mais simples de orbita é a orbita de um ponto fixo. Segue a
defini¢ao de ponto fixo.

Definicao 1.3 (Ponto fixo) x € X € um ponto fixzo do sistema dindmico
(X, G), quando sua drbita é um conjunto unitdrio. Ou seja, x € X € um
ponto fizo, quando G - x = {z}.

Exemplo 1.3.1 Seja S* = {u € C: |u| = 1}. Fizando j € S*, pode-se, de
maneira geral, definir o homeomorfismo T; : S* — S', Tj(x) = jx. Segue
que (S, T;) possui ponto fizo se, e somente se, j = 1. E, sendo j =1, Ty €
identidade e, portanto, todo ponto de (S*,T}) € fizo.

Defini¢ao 1.4 (Orbita de um conjunto) Sejam (X,G) um sistema di-
namico e U C X. A orbita de U € o conjunto

G-U:{t-x:tEGeer}:UG-x:Ug-U.

zeU geG

Exemplo 1.4.1 Seja S' = {u € C: |u| =1}. Dado a € (R —Q), define-se
R, : S' — S', Rz = €™ . E, entdo, temos o sistema dindmico (S*, Ry),
que € denominado rotacao irracional do circulo. Nesse tipo de sistema dind-
mico, dado um aberto U C S' qualquer, veremos que Z - U = S*.

Defini¢ao 1.5 (Ponto periédico) Seja (X, G) um sistema dindmico. x €
X € um ponto periodico desse sistema dindmico, se, para algum g € G dife-
rente do elemento neutro, g-x = x.
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Exemplo 1.5.1 FEwidente que todo ponto fixo € ponto periddico. Além disso,
no exemplo 1.2.1, todo ponto € periddico em (S*, Ry /o).

Fizado o € Q, define-se Ry : St — S, onde R, (2) = e*™z: esse sistema
dindmaico é chamado de rotagao racional do circulo. Veremos, neste texto, que
todo ponto de (S, R,) € periddico.

A figura 1.2 abaizo ilustra o sistema para o = 1/4.

Figura 1.2: Rotacao racional do circulo.

Em um sistema dinamico qualquer, evidente que, se a 6rbita de um ponto
é finita, entao esse ponto é peridédico. Num sistema dindmico discreto, a
reciproca ¢ verdadeira. Segue o enunciado desse lema (e sua demonstragao).

Lema 1.1 Seja (X,Z) um sistema dindmico. Dado x € X, Z - x € finita se,
e somente se, x € periodico. No caso em que x € periodico, denomina-se a
cardinalidade de Z - x de “periodo de x”.

Prova: Com efeito, seja (X, 7Z) um sistema dindmico. Se z € X é periddico,
segue que existe n € Z — {0} tal que n -z = z. Tem-se, entao, que —n é tal
que —n -z =z, afinal, —n-x=-n-(n-z)=(—n+n)-x =0 -2 =z. Logo
podemos supor, sem perda de generalidade, que n > 0.

Provemos que, dado m € Z, m - x = m(mod n) - z. Com efeito, dado
[ = m(mod n), segue que m—1 = kn (para algum k € Z ). Logo (m—1)-x =
(kn) -z = x e, portanto, [ -z =[-((m —1)-x) = m-z. Isso completa a prova
de que m - x = m(mod n) - x.
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Provou-se, entao, que a cardinalidade de Z - x é menor ou igual a n. [

1.2 Homomorfismos

Um ponto importante no estudo de Sistemas Dinamicos é a construcao de
novos sistemas dinamicos partindo de outros. Um dos meios mais elementares
de construir um sistema dinamico é o sistema dinamico produto.

Definicao 1.6 (Sistema dinamico produto) Sejam (X,G) e (Y,G) sis-
temas dindmicos. Define-se o sistema dindmico produto como sendo (X X
Y,G), onde g - (z,y) = (g-x,9-y). Note que, de fato, isso é um sistema
dindamico, afinal, como X,Y sao compacto metrizaveis, seque que X X Y €
compacto metrizavel. Além disso, € evidente que a a¢do € continua e continua

satisfazendo as condigcoes de acao.

Exemplo 1.6.1 Seja S' = {z € C: |z| =1}. Definem-se Id : S* — S!,
onde Id(z) = z, e Ry : S' — S', onde R,z = ™ x. Entdo temos os dois
sistemas dindmicos (S',Id) e (S', R;). Tem-se que S*' x S* =T? € o toro.
Com os resultados que serao apresentados neste texto, serd fdcil notar que o
sistema dindmico produto (T? Z) de (S',Id) e (S', Ry), ilustrado na figura
1.3, € tal que nenhum ponto € periodico nem fizo.

Figura 1.3: Sistema dindmico produto.

Ao tratarmos aqui de um sistema dindmico (X, G), estamos particular-
mente interessados nas propriedades topologicas de (X,T). Apods definir
homomorfismos entre sistemas dindmicos, teremos o significado preciso do
que sao essas propriedades.
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Definicao 1.7 (Homomorfismo de sistemas dinamicos) Um homomor-
fismo entre dois sistemas dinadmicos (X, G) e (Y, G) é uma aplica¢ao continua
¢: X =Y tal que, para todo g € G e todo x € X,

g-d(x) =d(g- ).

Quando ¢ : X — Y € sobrejetivo, diz-se que ¢ € uma semi-conjugac¢ao
topologica. E, quando o ¢ : X — Y € um homeomorfismo, diz-se que 0s
sistemas dindmicos (X,G) e (Y, H) sao isomorfos. E, nesse caso, eles sao
indistinguiveis em nosso estudo.

E facil notar que isomorfismo entre sistemas dinamicos é uma relacao de
equivaléncia.

Exemplo 1.7.1 Sejam (X,G) e (Y,G) dois sistemas dinamicos. Toma-se o
sistema dindmico produto (X xY,G). Segue que a proje¢io ¢y : X XY — X,
o1(z,y) = x, € um semi-conjugagao entre (X x Y,G) e (X,G). De forma
andloga, a proje¢io ¢g : X XY — 'Y € uma semi-conjugacao entre (X XY, Q)
e (Y,G).

Dessa forma, dados os sistemas dinamicos do exemplo 1.6.1, seque que
a projecao do toro no circulo ¢ : T?> — St tanto é uma semi-conjugacdo
entre (T2, Z) e (S, R;), como ilustrado na figura 1.4, quanto é uma semi-
conjugagao entre (T? Z) e (S, Id).

Figura 1.4: Semi-conjugacao projecao.

A propriedade mais simples que é preservada por isomorfismos entre sis-
temas dinamicos é a de e existéncia de pontos fixos e pontos periddicos.
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Proposicao 1.2 Sejam (X, G) e (Y, G) sistemas dindmicos. Sem: X —Y
€ um homomorfismo entre os sistemas dindmicos, seque que, se x € X €
periodico em (X, G), entao w(x) € Y € periddico em (Y,G). Sey € X € fixo,
seque que w(y) € firo em (Y,G)

Prova: Com efeito, se x € X é periodico, segue que existe g € G tal que
g-x = x. Segue, entdo, que g - w(x) = 7(g-x) = w(x), ou seja, 7(zr) é
periddico. Para provar a segunda afirmacao, seja y € X fixo. Dado h € G,
tem-se que h - 7(y) = w(h-y) = 7(y). Logo 7(y) é fixo em (Y, G). O

As propriedades que sao preservadas por isomorfismos sao denominadas
“propriedades topologicas” dos sistemas dinamicos.

Definicao 1.8 Um sistema dindmico discreto (Y,S) é um fator do sistema
dindmico discreto (X, T), se existe uma semi-conjugacio ¢ - X — Y. A apli-
cagao ¢ é chamada aplicagao fator. Nesse caso, (X,T) € uma extensao
de (Y,S).

A 1magem inversa de cada ponto por uma aplicagao fator € chamada de
fibra e o conjunto {¢p'(y) : y € Y} € chamado de conjunto das fibras.

Sejam (X, T) e (Y, S) sistemas dindmicos discretos. A condi¢do para que
¢ : X — Y seja um homomorfismo entre os sistemas dinadmicos é apresentado
na proposicao seguinte.

Proposicao 1.3 Sejam (X,T) e (Y,S) sistemas dindmicos discretos. Se
¢: X =Y éuma aplicagao continua tal que

¢(Tx) = S(¢(x)),
entdo ¢ um homomorfismo entre (X,T) e (Y, S)

Prova: Com efeito, para provar a proposicao basta provar que, para todo
r € X etodon € Z, S"(¢(x)) = ¢(T"x). Dado x € X, provemos que
S™*(p(x)) = ¢(T"x) para todo n € N. Para n = 1, a afirmacao coincide com
a hipdtese. Supode-se por inducao que a afirmacgao seja verdadeira para um
m. Segue que ™ ((x)) = S(S™(6(2))) = S(H(T™a)) = S(T(T™x)) =
d(T™ 7). TIsso completa a prova por indugao de que S™(¢(x)) = ¢(T"x)
para todo n € N.
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Para completar a prova, basta provar por inducao que

S(@(x)) = S(T ")

para todo n € N. Tem-se que, fazendo z = Ty, ¢(T'(y)) = S(¢(y)). Portanto,
como y = T 1(x), segue que

S7He(x)) = d(y) = ST (x)).

Logo a afirmacao é verdadeira para n = 1. O resto de demonstracao por
inducao é anélogo & inducao anterior. U

1.3 Minimalidade

Defini¢ao 1.9 Seja (X, G) um sistema dinamico. Um subconjunto Y de X
€ denominado G-invariante, se G-Y =Y.

No caso de um sistema dindmico discreto (X, T), podemos falar que Y C
X € Z-invariante ao satisfazer T(Y)=TY CY e T (Y) CY. Neste caso,
usa-se a terminologia T-invariante.

Exemplo 1.9.1 Seja (X, G) um sistema dinamico. Para todo v € X, a
orbita de x é um subconjunto G-invariante. Com efeito, basta ver que, evi-
dentemente, dadosy € G-x e h € G, tem-se que y = g-x para algum g € G.
E, portanto, h-y=h-(g-z) = (hg) -z € G- z.

De forma andloga, conclui-se que, se (X,G) é um sistema dindmico, a
orbita de qualquer subconjunto V-C X é G-invariante.

Alguns resultados bésicos sobre subconjuntos invariantes serao provados
antes de definirmos um dos principais conceitos envolvendo subconjuntos
invariantes: o de subconjunto minimal.

O fecho de um subconjunto invariante num sistema dinamico é, ainda,
invariante. Disso segue que o fecho da orbita de um conjunto (ou de um
ponto) ¢ invariante. Esses resultados serao formalizados e provados abaixo.

Lema 1.4 Seja (X,G) um sistema dindmico. Se Y C X € G-invariante,
seque que Y ¢ G-invariante.

Em particular, para todo x € X, G-z € G-invariante. E, para todo
Y Cc X, G-Y € G-invariante.
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Prova: Com efeito, se Y é G-invariante, tem-se que, dado g € G, g-Y C Y,
donde segue que (¢g-Y) C Y. E, portanto, pela continuidade da agao,

g-YC(g-Y)CY.

Ficou provado, entdo, que Y é G-invariante.
Em particular, dados z € X e Y C X, tem-se que G-z ¢ G -Y sao
G-invariantes. Logo G - x e G - Y sao G-invariantes. U

Se um subconjunto é invariante num sistema dinamico, o mesmo ocorrera
com o seu complementar. Isso é um resultado bem facil de se deduzir que seré
usado muitas vezes em demonstragoes pelo texto, portanto sera enunciado e
provado abaixo.

Lema 1.5 Sejam (X,G) um sistema dindmico e Y C X wum subconjunto
G-invariante. Seque que X —Y =Y ¢ é G-invariante.

Prova: Com efeito, prova-se por contraposicao. Se Y¢ = X — Y nao é
G-invariante, segue que existem g € G e y € Y tais que g -y € Y. Logo
segue que Y nao é G-invariante, pois existe g -y € Y tal que

gl gy =ey=ygy.

Definicao 1.10 (Subconjunto minimal) Seja (X,G) um sistema dind-
mico. M C X é minimal se é um subconjunto nao-vazio, G-invariante,
fechado e que nao contenha partes proprias nao-vazias fechadas que sejam
G-invariantes. Ou seja, M C X € minimal, se

1. M ¢€ fechado e G-invariante;
2. FCM,F+#0, F fechado e G-invariante —> F = M.

Por sua vez, um sistema dinamico (X,T) € denominado minimal se X ¢
minimal desse sistema dindmico.
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Exemplo 1.10.1 Define-se R, : S* — S', R.x = ™ x. Veremos, neste
texto, que (S, R;) € minimal. Mais geralmente, se a € (R — Q), define-se
Rox = e*™x. E, entao, (S, R,) € minimal.

E facil verificar que a propriedade de minimalidade ¢ um invariante por
isomorfismos em sistemas dinamicos.

Note que um sistema dinamico é minimal se, e somente se, a 6rbita de
todo ponto é densa no espacgo de fase. Apesar de isso ser uma conseqiiéncia
direta da definicao, sera enunciado como um lema para futuras referéncias.

Lema 1.6 Um sistema dindmico (X,G) € minimal se, e somente se, todo
ponto de X tem orbita densa em X.

Prova: De fato, seja (X, G) um sistema dindmico minimal. Se o fecho da
orbita de um ponto z de X fosse uma parte propria de X , entao X nao seria
minimal, pois, pelo lema 1.4, o fecho da 6rbita de x é G-invariante (e, no
caso, obviamente, nao-vazio e fechado). Logo o fecho da érbita de qualquer
ponto é necessariamente X.

Reciprocamente, se X nao ¢ minimal, segue que existe uma parte propria
F de X fechada T-invariante nao-vazia. Dado = € F', tem-se que G -z C F
e, entdo, G- x C F # X. Isso completa a prova de reciproca. U

Defini¢ao 1.11 (Subsistema) Seja (X, G) um sistema dindmico (espago
de fase metrizdvel compacto). Se' Y C X € fechado e G-invariante, (Y,G) é
chamado de subsistema do sistema dindmico (X, G).

Note que, nesse caso, de fato, (Y,G) é um sistema dindmico. Afinal, €
evidente que a acdao mantém suas propriedades. Além disso, Y € fechado do
compacto metrizdvel X e, portanto, é compacto metrizdvel.

Em particular, se M C X € minimal do sistema dindmico (X, G), pode-se
tomar o subsistema (M,G).

Um importante teorema de caracterizacao de sistemas dinamicos mini-
mais segue abaixo.

Teorema 1.7 Seja (X,G) um sistema dindmico. Sao equivalentes as se-
guintes afirmagoes:
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1. (X,G) € um sistema dindmico minimal;
2. Os unicos fechados Y C X T-invariantes sao () e X ;
3. Para todo conjunto nao-vazio aberto U C X, G-U = X;

4. Pata todo aberto nao-vazio U C X, existem gi,...,qr € G tais que

k
i=1

Prova: (1)=(2) é 6bvia. Para provar que (2)=(3), dado U C X aberto
e nao vazio, segue que, por G - U ser um aberto, o seu complementar F é
um fechado. Tem-se que G - U é G-invariante, logo F' é G-invariante. Pela
hipotese, por F' ser fechado G-invariante, segue que F' ou é igual a X, ou
¢ vazio. Como X — F = F¢ = (G - U é necessariamente nao vazio (pois ao
menos ) # U C G-U ), segue que F' =, ou seja, G-U = X.

Para provar que (3)=(4), basta ver que, dado U C X aberto nao-
vazio, G - U = U g-U = X & uma cobertura aberta de X e, portanto,

geG
pela compacidade de X, existe uma subcobertura finita, ou seja, existem

k
g1, - -, gx € G tais que Ugi-U:X.
i=1

Para provar que (4)=>(1), faremos prova por contraposi¢ao. Ou seja,
provaremos que negacao de (1) implica na negagao de (4). Seja (X, G) nao
minimal, segue que existe um fechado nao-vazio F' C X G-invariante tal que
F # X. Toma-se U = X — F que, pela hipotese, é nao-vazio. Tem-se, entao,
que U é G-invariante. Logo

Ug v=U#x

geG

Em particular, isso quer dizer que nao existe um subconjunto finito g C G
talqueUg-U:X. U

geg

Teorema 1.8 Todo sistema dindmico (X,G) possui um subconjunto mini-
mal M C X.
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Prova: Seja (X, G) um sistema dindmico. Coloquemos a ordem parcial da
inclusao na familia § dos subconjuntos fechados nao-vazios G-invariantes de
X. Essa familia é nao vazia, pois ao menos X € §. Note que um subconjunto
fechado de um compacto é compacto e, portanto, todo elemento de § é
compacto.

Dada uma cadeia K qualquer de §, a intersecao dos elementos de uma
subfamilia finita qualquer

{Bi,...,B,} CK

é igual ao menor conjunto e, portanto, é nao vazia. Logo, por K ser uma
familia de fechados de X que satisfaz a propriedade de intersecao finita, a
interse¢ao m F' é nao vazia. Note que essa intersecao é uma cota inferior da

FeK
cadeia K. Ou seja, foi provado que conseguimos uma cota inferior para toda

cadeia de § e, portanto, pelo lema de Zorn, temos que § tem um elemento
minimal M.

Note que o fechado M ¢é G-invariante e é nao vazio, pois M € F. Se
My C M é fechado, nao-vazio e G-invariante, segue que My € F' e My C M,
ou seja, My = M. Isso completa a prova de que M C X é um conjunto
minimal de (X, G) e, portanto, completa a demonstracdo do teorema. O



Capitulo 2

Recorréncias

Esse capitulo sera dedicado a um dos conceitos mais basicos da dinamica to-
polégica: o de recorréncia (de Poincare). Esse conceito ¢ intimamente ligado
a nogao de minimalidade. Um dos resultados mais fundamentais desse capi-
tulo é o teorema de Birkhoff (resultado 2.3.1). Esse resultado seré provado
logo depois de apresentado o conceito de conjunto w-limite.

Seguem a definicao de ponto recorrente e um lema importante sobre ima-
gem de pontos recorrentes por homomorfismos.

Definigao 2.1 Seja (X,T) um sistema dindmico discreto. Um ponto x € X
diz-se recorrente se eriste uma seqiéncia de numeros inteiros (n;) tal que
n; — 0o e tal que nj - x — x.

Lema 2.1 Sejam (X,T) e (Y,S) sistemas dindmicos discretos. Se w: X —
Y € um homomorfismo e x € X é recorrente, seque que w(x) € Y é recorrente.

Prova: Com efeito, dada uma vizinhanga U C Y de 7(z), segue que 7~ 1(U) é
uma vizinhanca de z. Por z ser recorrente, Cr—1 ) = {n € N: T"z € n71(U)}
é infinito.

Dado m € Cr-11), segue que S™(w(x)) = m(T™x) € U. Isso provou que

Cy = {n eN: Sn(ﬂ'($)) S U} C Oﬂ—l(U).

E, portanto, Cy € infinito. Logo completou-se a prova de que 7(x) é recor-
rente em (Y, .5). O

21
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2.1 Conjuntos Limites

Num sistema dindmico discreto minimal, provaremos que todos os pontos
sao recorrentes. Note que provamos a existéncia de um subconjunto minimal
num sistema dinamico, logo segue que todo sistema dinamico discreto possui
pontos recorrentes (basta tomar um ponto do subconjunto minimal).

Antes de provar esses resultados, seguiremos definindo mais uma impor-
tante nocao em Dinamica Topoldgica. Essa nogao é a de conjuntos limites.
Seja (X, T') um sistema dinamico discreto, dado = € X, dizer que y pertence
ao conjunto w-limite de z significa, intuitivamente, que as iteragoes de x
estarao “freqiientemente” perto de y. As nogoes de conjuntos limites como
serao definidas aqui sao restritas a sistemas dindmicos discretos. Portanto,
nesta secao, todos os sitemas dinamicos serao discretos.

Defini¢ao 2.2 (Conjunto w - limite) Seja (X,T) um sistema dindmico
discreto. Dado x € X, um ponto y € X é w—limite de x, se existir uma
seqiiéncia n, — oo tal que ny - x — y. Em particular, se y é w—limite ,
tem-se que y € (Z* - ). O conjunto w—limite de z, denotado por w(x), é
o conjunto de todos pontos w—limites. Note que

wla)={t-z:t>n}

Nesses termos, dizer que € X é um ponto recorrente é equivalente a
dizer que z € w(x). Ou seja, se (X, T') ¢ um sistema dinamico discreto, x € X
é recorrente se, e somente se, x pertence ao seu proprio conjunto w—limite.

Lema 2.2 Seja (X,T) um sistema dindmico discreto. O conjunto w—limite
de qualquer ponto x de X ¢é nao-vazio, fechado, compacto e T-invariante.

Prova: Com efeito, como X é um espago métrico compacto, segue que
toda seqiiéncia de pontos em X possui uma subseqiiéncia convergente, logo,
de fato, o conjunto w—limite de qualquer ponto x € X ¢é nao-vazio, pois
a seqiiéncia (n - x) possui uma subseqiiéncia convergente. Como o conjunto
w—limite é uma interse¢ao de fechados, segue que é, também, fechado. Como
ele ¢ um fechado de um compacto, segue que o conjunto w—limite é compacto.

Dado y € w(z), segue que existe uma seqiiéncia (ny) de nimeros natu-
rais tal que ny — 400 e ng-x — y. Se m € Z, segue que (ng +m) é um
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seqliéncia de ntmeros inteiros tal que ngy +m — +oo e (np+m) -z —m-y
(pois T é continua). Logo m -y € w(x). Se tirarmos os termos negativos da
seqiiéncia (ny — m), conseguimos uma seqiiéncia (my) de ntmeros naturais
tal que my — +o00 e my - x — (—m) - y. Portanto (—m) -y € w(z) e, entdo,
w(z) é T-invariante. O

Veremos que, com o resultado 2.2, segue diretamente que todos os pontos
de um sistema dindmico minimal discreto sdo recorrentes.

Proposicao 2.3 Seja (X,T) um sistema dindmico discreto minimal. Tem-
se que todo ponto x € X € recorrente.

Prova: Com efeito, seja (X,7) é um sistema dindmico discreto minimal.
Dado =z € X, segue que w(z) ¢ um subconjunto fechado nao-vazio e T-
invariante. Mas, como (X, T') é minimal, segue que w(z) = X. E, portanto,
em particular, z € w(x), donde segue que x é recorrente. O

Evidente que a reciproca da proposicao 2.3 nao é verdadeira: por exemplo,
¢ muito facil construir sistemas dindmicos nao minimais tais que todos seus
pontos sao todos periddicos (em particular, recorrentes).!

Segue o teorema de Birkhoff que fala da existéncia de pontos recorrentes
em todo sistema dindmico discreto.

Corolario 2.3.1 (Teorema de Birkhoff) Todo sistema dindmico discreto
(X, T) possui um ponto recorrente.

Prova: Dado um sistema dinamico (X, T'), segue pelo teorema 1.8 que existe
M C X minimal. Evidente que M é compacto (pois ¢ fechado de um com-
pacto), logo podemos considerar o subsistema (M,T'). Pela proposigao 2.3,
(M, T) é tal que todo z € M é recorrente. Evidente que x € M é recorrente
no sistema (X, 7). O

2.2 'Translagoes em Grupos

O sistema de translagao em grupos compactos metrizaveis é um sistema di-
namico com propriedades bem interessantes, principalmente em relagao a

'Um exemplo ja apresentado em 1.5.1 é a rotacao racional do circulo.
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recorréncias. Por essas propriedades, esses sistemas dinamicos se tornaram
muito importantes na teoria. Além de ser um sistema dindmico muito impor-
tante e comum, esse tipo de sistema dinamico serd usado na demonstragao
de um dos teoremas sobre Aproximacao Diofantina. Segue a defini¢ao de
sistema de translagao.

Definigao 2.3 (Sitema de Translagao) Seja (G, -) um grupo compacto me-
trizdvel, fiza-se v € G. Define-se, entao, T : G — G, T(z) =r-x. A
aplicagao T € evidentemente um homeomorfismo (por G ser um grupo to-
poldgico). T € chamada de translagao e o sistema (G,T) € chamado de
ststema dindmico da translacao por r, ou sistema de transla¢ao r.

Exemplo 2.3.1 Temos que S' é um grupo metrizdvel compacto. Define-se
Ry : S' — S, R.x = e*™x. Seque que (S, Ry) € um sistema de translagdo

por u = e*".

A proposicao abaixo ilustra uma das interessantes propriedades que um
sistemas de translagao tem.

Proposicao 2.4 Seja (G, T) um sistema dindmico de transla¢ao. As orbitas
dos pontos de G sao todas homeomorfas entre si.

Prova: Seja (G,T) um sistema dindmico de translagao por a € G. Com
efeito, dados g € G, define-se f : Z-a — Z-g, f(a") = a"g =n-g. E
evidente que f é continua e é uma bijecao. Tem-se que f~ ' :Z-g — Z-a
, [Ha"g) = (a"g)g~' = a™ é continua. Logo f ¢ um homeomorfismo. Isso

completou a prova da proposicao. U

Essa proposicao implica, por exemplo, que, se algum ponto num sistema
dindmico de translagao tem orbita finita, entao todos os pontos desse sistema
dindmico possuem orbitas finitas. Ou seja, segue o seguinte lema.

Lema 2.5 Seja (G, T) um sistema de translagao por a € G. Todo ponto de
um sistema de translacao € periddico se, e somente se, algum ponto de G é

periodico.

Além dessas importantes propriedades, tem-se a seguinte propriedade.
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Lema 2.6 Seja (G,T) um sistema dindmico de translagio por a € G. Segue
que (G,T) € minimal se, e somente se, existe um ponto de G com orbita
densa.

Prova: Note que é evidente que a minimalidade implica que a 6rbita de
qualquer ponto de G é densa em G (segue do lema 1.6).

Reciprocamente, seja ¢ € G um ponto com Orbita densa. Dado h € G,
provemos que a orbita de h é densa. Dado r € G tem-se que existe uma
seqiiéncia de nimeros inteiros ndo necessariamente distintos (ny) tal que
ny - g — rh™tg. Pela continuidade do produto, segue que ny - h — r. Isso
provou que a orbita de h é densa e, portanto, completa a prova de que todo
ponto de G tem orbita densa. Pelo lema 1.6, segue que (G,7') é minimal. [J

E, por fim, todo sistema dindmico de translagao é recorrente: no sentido
de que todos seus pontos sao recorrentes. Esse resultado serd muito impor-
tante: serd usado no principal resultado sobre produtos cruzados e, também,
numa demonstracao sobre aproximagao diofantina.

Proposigao 2.7 Seja (G,T) um sistema de translagao por a € G. Todos
pontos de G sao recorrentes.

Prova: Pelo teorema de Birkhoff, existe um ponto z € G recorrente em
(G,T). Segue que existe n; — oo tal que a™z — z. Dado g € G, pela con-
tinuidade do produto no grupo topologico, segue que a™g = a™zz"1g — g.
Ou seja, g é recorrente. Ul

A proposicao anterior poderia ter sido demonstrada sem usar o teorema
de Birkhoff. Dados @ € G e u € G, toma-se a seqiiéncia (a™). Temos, pela
compacidade de G, que existem n; — oo e v € G tais que a™/ — v. Mas, sem
perda de generalidade, podemos supor que m; = nj.; — n; — oo. Portanto,
pela continuidade do produto e da inversao, tem-se que

a™u = a™* (") 'y — v e = u.

Isso provou, entdo, que, num sistema de rotagao por a (qualquer), todo ponto
¢ recorrente.
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2.3 Produtos Cruzados

Nesta secao, os sistemas dinamicos sao todos discretos. Ja sabemos que a
imagem de um ponto fixo, periddico ou recorrente por uma semiconjugagao
entre sistemas dinamicos discretos tem a propriedade preservada. Mas nada
pode ser dito da imagem inversa. No entanto, mediante certas condigoes,
esse quadro é mudado (e, entdao, conseguiremos mais informagoes usando
a semi-conjugacao entre dois sistemas dinamicos discretos). A maior parte
dessa secao dedica-se a esse mérito.

Defini¢ao 2.4 Sejam (Y,S) um sistema dindmico discreto, G um grupo
compacto metrizavel e ¢ 'Y — G uma aplicagao continua. Define-se o
par (X,T), onde X =Y x G e T(y,g) = (Sy,d(y)g). Esse par é chamado
de produto cruzado de (Y,S) via o grupo G pela aplicag¢io ¢. (X, T) também
¢ chamado de produto cruzado de (Y,S) e G.

Se (Y, S) é um sistema dinamico discreto, entao o produto cruzado (X, T')
de (Y, S) via o grupo G por uma aplicagao ¢ é um sistema dinamico discreto.
Além disso, (X, T') é uma extensao de (Y, S). A proposi¢ao abaixo estabelece
essas afirmacoes.

Proposicao 2.8 Sejam (Y, S) um sistema dindmico discreto, G um grupo
compacto metrizdvel e (X,T) um produto cruzado de (Y, S) via G. Tem-se
que (X, T) é um sistema dindmico e € uma extensao de (Y,S), onde

7: X — Y
(v,9) —

¢ a semi-conjugagao entre (X, T) e (Y, 9).

Prova: De fato, X é produto cartesiano de dois espacos métricos compactos
e, portanto, € um espago métrico compacto. A transformacao T é continua
em cada uma de suas coordenadas e, portanto, é continua. A aplicacdao
inversa é definida por

TNz, h) = (S7'2, (6(S™"2)) ')

e ¢ evidentemente continua (logo, de fato, 7" ¢ um homeomorfismo).
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Resta verificar que, de fato, (X,7") ¢ uma extensao. Ora, basta, entao,
verificar que 7 : X — Y, onde 7(y,g) = y é uma semi-conjugagao. Isso
é, obviamente, uma aplicagdo sobrejetiva continua (&, na verdade, a proje-
¢do). Basta, entdo, verificar que 7(7T'(y,g)) = S (7(y,g)). Dado (y,g9) € X,
©(T(y,g)) = Sy. Também ocorre que S (7(y,g)) = Sy. Logo essa condigao
é satisfeita, ou seja, provamos que, de fato, 7 é uma semi-conjugacao. [l

Definigao 2.5 Sejam (Y,S) um sistema dindmico discreto, G um grupo
compacto metrizdvel e (X,T) um produto cruzado de (Y,S) via G. Uma
translagao a direita do produto cruzado (X,T) por h € G € uma aplicagao
Ry, : X — X tal que Ry(y,q) = (y, gh).

Proposicao 2.9 Sejam (Y, S) um sistema dindmico discreto, G um grupo
compacto metrizavel e (X,T) um produto cruzado de (Y,S) via G. Entao,
para todo h € G, a translagao R, é uma conjugacao® de (X,T) nele mesmo.

Prova: R), é obviamente um homeomorfismo. Resta apenas provar que T e
R, comutam. Dado x = (y,g) € X, tem-se que

Ru(Tz) = Ru(Sy,¢(y)g)
= (Sy,é(y)gh)
= T(y,gh)
= TRu(y,9)
= TRy(x)

g

O principal mérito desta se¢ao é construir uma condicao suficiente para
que o sistema dinamico discreto fator (Y, .S) traga informagoes sobre os pontos
de recorréncia de sua extensao (X,7). No caso, essa condi¢ao suficiente é
(X, T) ser um produto cruzado de (Y, S) via um grupo compacto metrizavel
G. Isso é amplamente utilizado em dinamica topolégica. Em particular,
tudo feito nesta se¢ao sera importante nas demonstracoes dos teoremas sobre
aproximagao diofantina. Segue um resultado que torna isso mais claro.

20u seja, isomorfismo de sistemas dinamicos.
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Teorema 2.10 Sejam (Y,S) um sistema dindmico discreto, G um grupo
compacto metrizavel e (X, T) um produto cruzado de (Y,S) via G. y €Y €
recorrente se, e somente se, (y,q) € recorrente em X para todo g € G (ou
seja, todos pontos de sua fibra sao recorrentes).

Prova: Como (X,T) é uma extensao de (Y,.5), segue do lema 2.1 que, se
x € X recorrente, entdo m(x) é recorrente.

Reciprocamente, seja e € G o elemento neutro de G. Primeiramente,
prova-se que y € Y recorrente implica (y,e) € X recorrente. Como y € Y é
recorrente, segue que existe n; — oo tal que S™y — y. Como X é compacto,
pode-se supor, sem perda de generalida (passando a uma subseqiiéncia se
necessario), que (7™ (y,e)) converge. Tem-se que 7" (y,e) — (y,h) para
algum h € G. Ou seja, (y,h) € w(y,e).

Prova-se que Rj(w(y,e)) C w(y,e). Dado (z,a) € w(y,e), segue que
existe m; — oo tal que 7™ (y,e) — (z,a). Logo

T™i(y,h) = T" Ry(y,e)

= Ru(T™(y,e€))
—  Rp(z,a).

Como w(y, e) é T-invariante, 7™ (y, h) € w(y, e) para todo os indices m;.
E, por w(y, e) ser fechado, segue que Ry(z,a) € w(y,e).

Logo, em particular, segue que R"(y, h) = (y, ") € w(y, e) para todo
m € N. Pelo resultado 2.7, segue que existe s; — oo tal que (y,h*) — (y,e)
e, como w(y,e) é fechado, isso prova que (y,e) € w(y,e), ou seja, (y,e) é
recorrente.

Por (y, e) ser recorrente, existe k; — oo tal que T% (y,e) — (y,e). Dado
g € G, segue, pela continuidade de R, que

TF (y,g) = Ry(T% (y,€)) — R,(y,¢e) = (y,9),

ou seja, foi provado que (y, g) é recorrente. U

2.4 Recorréncia Multipla

Nesta se¢ao, recorreremos as definigoes e aos resultados sobre sistemas diné-
micos mais gerais. O principal objetivo dessa secao é provar o teorema 2.13
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Defini¢ao 2.6 Dados dois sistemas dindmicos (X, G) e (X, H), diz-se que
(X,G) e (X, H) comutam entre si, se para todo g € G, todo h € H e todo
reX,g-(h-z)=h-(g-x).

Defini¢ao 2.7 Um sistema dindmico discreto (X,T) € chamado de sistema
dindmico homogéneo, se existe um sistema dindmico (X, G) que comuta com
(X,T) tal que (X, G) € minimal.

Um subconjunto A C X fechado é homogéneo com respeito a (X, T), se

existe um sistema dindmico (X, H) que comuta com (X, T) tal que A C X é
minimal nesse sistema dindmico.

Lema 2.11 Sejam (X, T) um sistema dindmico discreto e A C X um sub-
conjunto fechado homogéneo. Suponha que para todo € > 0, existem x,y € A,
n € N tais que d(T"x,y) < €. Entao, para todo e > 0, existem z € A em € N
tais que d(T™z,z) < e.

Um conjunto A C X satisfazendo a hipotese é denominado conjunto ho-
mogéneo recorrente.

Prova: Supoe-se que (X,T) é um sistema dindmico e A C X é um subcon-
junto fechado homogéneo satisfazendo a hipétese. Primeiramente, provare-
mos que “para todo € > 0 e todo u € A, existem w € X e m € N tais que
d(T"u,w) < €”.

Dado € > 0, seja (X, G) um sistema dinamico que comuta com (X, 7") tal
que A C X é minimal em (X, G). Como A é fechado, segue que é compacto
e, portanto, é totalmente limitado. Disso segue que existe uma cobertura de

A por bolas abertas A = UBi de raios menores que £/4. Por (A, G) ser
i=1

minimal, para cada i € {1,...,n} , existe um conjunto finito F; C G tal que
-1 o
geF;

Denota-se F' := U F;. Evidente que F' ¢ finito, entao denotam-se F' =

i=1
{g1,.--,9n} e Iy :={1,...,N}. Dados u,v € A, tem-se que u € By, para
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algum k € {1,...,n} e, também, que v € gj_l - By, para algum j € Iy . Logo
(gj - v) € By e, entao, d(g; - u,v) < e/2.
Portanto min;es, d(g; - u,v) < £/2 para quaisquer u,v € A.

Por outro lado, pela continuidade uniforme da acao, tem-se que existe
d > 0 tal que, para todo i € Iy, d(g; - z,g9;-y) < /2, se d(z,y) < J. Pela
hipotese, existem z,y € A e m € N tais que d(T™x,y) < 0. Portanto, para
todoi € Iy ,

d(gi - (T™"x),gi-y) = d(T™(gi - x), i - y) < &/2

Temos, entao, que, para todo u € A,

miner, d(T(g; - x),u) < miner, (AT (g; - x), 9 - y) +d(g; -y, u))
< €/2+¢/2

= E&.

Ou seja, para todoe > 0 e cadau € A, existemm € New :=(g;-2) € A
tais que d(T™w, u) < e.
Logo a afirmacao esta provada.

Provemos a afimacao do Lema.

Dado € > 0, definem-se duas seqiiéncias (z,) em A e (m,,) em N induti-
vamente. Fixa-se zo € A. Pelo que foi provado, tem-se que existem z; € A e
my € N tais que d(T™ 2y, zp) < £/2.

Supoe-se, por inducao, que foram tomados zy, ...,z e ny,...,n; tais que,
para todo i < j <[, d(T™+ Ttz 2) < g/2.

Pela continuidade de T', existe § < £/2 tal que, se d(z, z;) < §, para todo
i<l d(Trisrttng ) < e/2.

Por outro lado, segue da afirmacao provada anteriormente, que existem
2141 € A engr € N tais que d(T™+1241, 2) < 0 < /2. Portanto

A(Tm M4, 2) < )2

para todo i < [. E, assim, ficam definidas as seqiiéncias indutivamente.
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Pela compacidade de X, segue que existe uma subseqiiéncia de (z,). Logo,
em particular, segue que existem z;, z; na seqiiéncia tais que d(z;, z;) < €/2.
Disso segue que

d(TniHJr-“Jranrle, Zj) d(Tm+1+m+nj+12j, Zi) + d(Zi, Zj)
e/2+¢/2
g.

IA A

g

Provaremos, na proposigao seguinte, que se (X, 7’) é um sistema dinamico
discreto e A C X é um subconjunto homogéneo recorrente, entao existe y € A
recorrente em (X, 7). Isso é um resultado forte sobre recorréncia que sera
importante na demonstracao do teorema de recorréncia miltipla.

Proposicao 2.12 Sejam (X, T) um sistema dindmico discreto e A C X um
subconjunto fechado homogéneo de X. Se para todo € > 0, existem x,y € A
en € N tais que d(T"x,y) < €; entao existem z € A e uma seqiéncia de
inteiros n; — oo tal que T"z — z. Ou seja, existe um ponto recorrente
z € A.

Prova: Seja (X, G) o sistema dinamico que comuta com (X, 7) e que torna
A C X minimal. Define-se a funcao

f:A —- R
r = infpend(T"z, x).
Nota-se que um ponto x é recorrente se, e somente se, f(x) = 0. Pelo

lema anterior, temos que infycaf(z) = 0. Temos que f é semicontinua
superiormente. Afinal, dados o € R e

ye{reA:infpend(T"z,x) < a},
tem-se que infrend(T"y,y) = B < a. Logo existe m € N tal que

m B+«
d(T™y,y) < 5
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Pela continuidade de 7™, segue que existe § > 0 tal que T™ (B(y;0)) C
B(T™y, O‘—;ﬁ) Ou seja, w € B(y; ) implica

5+a+a—5

d(T"w, w) < d(T"y, T"w) +d(T"y,y) < —3 5

= «

Logo, em particular, w € {z € M : inf,end(T"z,x) < a}. Isso provou que
{z € A:infpend(T"x,x) < a} & aberto (em A).

Pela semicontinuidade superior de f, segue que existe um ponto z € A
em que f é continua.

Supde-se por absurdo que f(z) > 0. Disso segue que existem ¢ > 0 e uma
vizinhanga aberta U C A de z tais que f(x) > ¢ para todo z € U. Tem-se
pela minimalidade de A em (X, G) que existem gy, ..., g € G tais que

Pela continuidade da acao de G, tem-se que existe § > 0 tal que d(z,y) <
 implica d(g; - x, g; - ) < € para todo i € {1,...,k}.

Tem-se que f(y) < § para algum y € A, pois infyeaf(x) = 0. portanto
existe m € N tal que d(T™y,y) < . Toma-se j € {1,...,k} talquey € gj_lU
e, entao, tem-se que

flg5y) < d(T"g5y, 9;9) = d(g;T™y, g;9) < €.

Absurdo, pois g; -y € U. Logo deve-se ter que f(z) = 0. O

O teorema abaixo ¢ um forte resultado de recorréncia (multipla) devido a
Furstenberg e Weiss. Com ele, provaremos, futuramente, uma “versao dina-
mica’ do teorema de Van der Waerden (que sera tirado como conseqiiéncia).

Teorema 2.13 (Furstenberg e Weiss) Seja F' = {T},...,T;} uma fami-
lia de homeomorfismos comutativos agindo num espago métrico compacto X .
Segque que existem x € X e uma seqiéncia n; — 0o tais que

TYx —x,Vie{l,... k}
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Prova: Com efeito, prova-se por inducgao sobre k. Para k = 1, a afirmacao
é o teorema 2.3.1. Supoe-se, por indugao, que a afirmagao seja verdadeira
para um k. Sejam F = {Ti,...,Tyy1} uma familia de homeomorfismos
comutativos agindo num espago métrico compacto X. Seja (X, G) o sistema
dinamico gerado por esses homeomorfismos. Ou seja, (X, G) = (X, Z*1)
tal que (nq,...,ng) - = T™ ... T™z. Toma-se um subconjunto minimal
(fechado) de (X,G) Y € X. Como Y ¢é minimal em (X, G), em partiular,
¢ G-invariante. E, apartir de agora, considera-se o sistema dinamico (Y, G).
Segue que Y C X é Ti-invariante (para todoi € {1,...,k+ 1} ). Além disso,
(Y, G) comuta com (Y, T;) para todo i € {1,...,k+ 1}.

Sejam YAl = YV x ... x Y e A C Y*! a diagonal de Y**1. Tem-
se que (Y*1 G), onde g (z1,...,7541) = (9 T1,...,9  Tps1), € tal que
A C YF! & um subconjunto minimal. Pode-se, entdo, definir 7 : Y*+1 —
YH*HL onde T(xy,...,2xs1) = (Thxy, ..., Tpi17rs1). Segue que A C YHH!
¢ um subconjunto homogéneo fechado do sistema dinamico (Y**1, T') (pois
(Y*1.T) comuta com (Y* Q)).

Prova-se que A C Y**1 ¢ um subconjunto fechado homogéneo de (Y*1,T)
que satisfaz a hipotese da proposicao 2.12. Define-se S; = T;T,_ +11 para
je{l,...,k}. Segue que

{S1,...,Sk}

¢ uma familia de homeomorfismos comutativos agindo no espago métrico
compacto Y. Pela hipétese de indugao, segue que existem n; — coe z € X
tais que

Sz — 2 Vie{l,... k}.

Logo, dado € > 0, existe my € N tal que
d(Siz,z) <e,Vie{l,...,k}.
Disso segue que, tomando y = (1,,"°z,...,T,[°2z) € X tem-se que
d(T™y, za) = d ((S1z,...,5%2,2),(2,...,2)) <.

Isso completou a prova de que A satisfaz a hipdtese da proposicao 2.12 e,
portanto, existe um ponto recorrente (w,...,w) € A de (Y**1 T). Disso
segue que existe n; — oo tal que

T (w,...,w) = (w,...,w).
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Mas isso implica justamente que
T w— w,Vie{l,....k+1}.

E isso completa a prova por inducao. U



Capitulo 3

Teoria do Numeros

Este capitulo utilizaré os conceitos e resultados provados até agora para de-
monstrar alguns resultados de teoria dos ntiimeros. A maioria dos resultados
que serao demonstrados neste capitulo sao antigos, mas suas demonstragoes
usando apenas dinamica topologica sao bem mais novas.

Atualmente, muitos pesquisadores usam sistemas dinamicos (teoria ergo-
dica) para encarar problemas atuais de combinatéria e aproximagao diofan-
tina. No entanto, as técnicas/resultados utilizados para isso estao fora do
escopo do texto. Este capitulo pretende apenas ilustrar o inicio dessa bonita
aplicagao de Dinamica Topologica a Teoria dos Niimeros, com demonstragoes
dindmicas de teoremas famosos.

3.1 Sistemas de Kronecker

Esta segao seré dedicada aos resultados de aproximacao diofantina. Os sis-
temas dinamicos estudados nesta secao sao, em sua maioria, com espagos de
fase sendo grupos compactos metrizaveis. Serao, portanto, bastante utiliza-
dos resultados sobre grupos topologicos. A referéncia [8] apresenta todos esses
resultados sobre gupos topologicos que nao estiverem explicitos no texto.

Defini¢ao 3.1 (Sistema de Kronecker) Seja (R, +) o grupo aditivo. Como
R ¢ um grupo abeliano, todo subgrupo € normal. Em particular, Z. é um
subgrupo normal, logo podemos considerar o grupo quociente R/Z. Por Z
ser fechado em R e por R ser um grupo metrizavel, localmente compacto e

35
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separdvel, o grupo quociente R/7Z, com a topologia quociente, é um grupo me-
trizdvel'. Fora isso, veremos mais adiante que R™/Z"™ é, de fato, compacto e
metrizdvel (como conseqiiéncias da proposi¢io 3.1).

Os grupos (R/Z)",R™/Z™ sao grupos topoldgicos isomorfos (por isso, co-
locamos a igualdade (R/Z)" = R™/Z"™). Esse fato é conseqiéncia de um te-
orema sobre grupos topoldgicos: ver [8]. Portanto podemos indicar R/Z por
T e, entao, R"/Z" = (R/Z)™ € denotado por T". Um elemento x +7Z € R/Z
serd denotado por T = x + 7Z. Note que, T =7 significa que existe k € Z tal
que x =k +y.

Um sistema de Kronecker é um sistema dindmico de transla¢ao com es-
pago de fase R" /7.

Proposicao 3.1 Sejam S = {x € C: |z| =1} com a operag¢ao de multipli-
cagao usual dos complexos e a métrica euclidiana dg e T = R/Z.

Tem-se que S € um subgrupo de um grupo topoldgico (metrizavel), logo é
topoldgico (metrizdvel). Define-se o sequinte epimorfismo:

0 : R — S p(r) =e*™ = cos(2mz) + i - sen(27x).

Nota-se que o Kernel desse epimorfismo € o conjunto Z dos inteiros (pois
e =1 se, e somente se, k € 7).
Entao, pelo primeiro teorema de isomorfismo, o homomorfismo

¢:R/Z — S, f(T) = cos(2mx) + i - sen(2mx) = ™.

€ um isomorfismo. Temos que ¢, além de ser um isomorfismo de grupos, é
um isomorfismo de grupos topoldgicos.

Prova: Precisa-se provar que ¢ é, de fato, um isomorfismo de grupos topo-
logicos. Note que ¢ é um homomorfismo de grupos, pois é evidente que, para
qualquer k € Z,

2m(x+y)k)i 2m(z+y))i

el el

6(27rac)i X 6(27ry)i.

E facil ver que ¢ é sobrejetiva. Basta ver que z = 27 - x “passa’” por todo
o intervalo [0, 27) e, portanto, passa por todos os valores possiveis da fungao
cos(z) + i - sen(z).

'Essa passagem ¢ explicada na referéncia [8].
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Logo, temos que ¢, como foi definida, é, de fato, um isomorfismo de grupos
(isso é conseqiiéncia do denominado “Primeiro teorema do isomorfismo”).

Por ¢ ser uma aplicagao continua e aberta, existe um “primeiro teorema
de isomorfismo” para grupos topologicos que garante que ¢ ¢ um isomorfismo
de grupos topologicos. Mas ndo assumiremos isso aqui (o “primeiro teorema
de isomorfismo” ¢ apresentado na referéncia [8]).

Resta provar que ¢ é, de fato, um homeomorfismo. Seja P : R — (R/N)
tal que P(z) = 7. Tem-se que ¢ é continua se, e somente se, (¢oP) 0 é¢.2 Note
que essa fungao (¢ o P) é evidentemente continua. Na verdade, se t : R — C,
t(z) = 2mxi (linear, portanto continua), segue que (po P) = Eot (onde E ¢
a funcdo exponecial nos complexos). Logo ¢ é continua. De forma andaloga,
nota-se que ¢! = PoT oL, onde T : C — R, T(z) = z/2mi ¢ linear, L
é o logaritmo nos complexos. Como todas as trés funcoes sao contiinuas, a
prova de que ¢! é continua esta completa.

Portanto ¢ é, de fato, um homeomorfismo. Il

A proposigao acima mostra que R/Z e S sao indistinguiveis no ponto
de vista de grupos topologicos. Esse fato faz com que possamos confundir
os dois grupos sem causar prejuizo ao rigor. Tem-se, por exemplo, que S é
compacto (pois € homeomorfo a circunferéncia de raio 1 em R?), logo também
é compacto R/Z. Temos, entao, que (R/Z)™ = R™/Z™ é o produto de espagos
compactos e, portanto, é compacto. Outra propriedade “herdada” para R/Z é
o fato de ser metrizavel (métrico). Com efeito, podemos induzir uma métrica
pelo isomorfismo de grupos topologicos (como sera feito na definigao abaixo).
E, entdao, (R/Z)" também é métrico (com uma das métricas do produto

(finito)).
Defini¢ao 3.2 Induzimos em R/Z uma métrica por ¢. Ou seja, definimos

a métrica em R/Z como sendo: d(x,y) := dg(¢(x),d(y)). Nota-se que, por
S ser metrizavel, R/Z é metrizdvel também (como jd haviamos previsto).

A meétrica induzida é equivalente a uma métrica denominada a “métrica
do menor arco™

d@,y) =min{|lx —y —m|: m € Z}.

2Procurar por “topologia quociente” no [8].
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Note que, se z,y € R, a distancia d(7,y) = ¢ significa, em particular, que
existe m € Z tal que |[x —y —m| =e.

Dados 7,7 € R/Z ~ S*, ¢é facil de verificar que d(T,7) ¢ igual ao compri-
mento do menor arco determinado por Z e  em S! dividido por 27. Ou seja,
dados z,y € R, a distancia d(Z,y) é igual ao comprimento do arco ilustrado
na figura 3.1 abaixo.

2miy

2T

2mix

27

Figura 3.1: Métrica do menor arco.

Quando nao estiver explicito o contrario, a métrica em T sera a a métrica
do menor arco. Fora isso, a métrica em T" serd a métrica do maximo em
relacao a métrica do menor arco, ou seja, a métrica:

dy(x,y) = max {d(x1,y1),...,d(xn, yn)}.

3.1.1 Teorema de Kronecker

Esta subsegao sera dedicada a demonstragao do teorema de Kronecker sobre
apoximagao diofantina (teorema 0.2). Consegue-se um resultado um pouco
mais fraco que o teorema 0.2 apenas com o resultado 2.7. Ele é chamado de
“lema de Kronecker” . Esse lema é conseqiiéncia direta do fato de que todos
os pontos num sistema dinamico de translagao sao recorrentes. Com esse
lema, conseguimos toda a ferramenta necessaria para demonstrar o teorema
0.2
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Lema 3.2 (Lema de Kronecker) Para todo oo € R e todo € > 0, existem
n €N em €7 tais que Ina — m| < e.

Prova: Com efeito, toma-se o sistema dinamico de Kronecker (R/Z,T),
onde TT = T + a. Pelo teorema 2.7, todo ponto desse sistema dinamico
é recorrente. Em particular, o ponto 0 € (R/Z) é recorrente. Logo, dado
e > 0, existe n € N tal que, com a métrica d do menor arco, d(na@,0) < e.
Isso quer dizer que existe m € Z tal que |na — m| < e. O

Definicao 3.3 (Rotagao irracional do circulo) Um sistema dindmico de
Kronecker, com espago de fase R/Z, que € uma transla¢io por r, onde r é
irracional, é chamado de rotagao irracional do circulo. (E, quando r € raci-
onal, esse sistema é chamado de rotagdo racional).

Antes de demonstrar o teorema de Kronecker, convém fazer uma observa-
¢ao sobre rotagoes irracionais. Se (R/Z,T') ¢ um sistema dindmico de rotacao
irracional do circulo, segue que nao existem pontos periddicos nesse sistema
dindmico. A demonstracao desse fato é simples. Supondo por absurdo que
7T € R/Z é um ponto periddico, segue que, para algum n € N, n-Z = T, ou
seja, existe k € Z tal que r = x —k+na. Disso segue que na = k e, portanto,

o = —. Absurdo, pois contraria a hipotese de « ser irracional. Na verdade,

VerenTlLos que toda rotagao irracional é um sistema dinamico minimal.

Além disso, é facil ver que todos os pontos de rotagoes racionais sao
periddicos. Afinal, um sistema de rotagao por ]% (p e q inteiros) ¢é tal que
q-T =T para todo T € R/Z. E, entdo, fica facil ver que toda rotacao racional
¢ um exemplo de sistema dindmico de translagao nao minimal.

Segue o enunciado e a demonstragao do teorema de Kronecker 0.2.

Teorema 3.3 (Kronecker) Dados a € (R—Q) e A € R. Para todo € > 0,
existem m,n € Z tais que lna — X — m| < e.

Prova: Com efeito, dados « € R —Q, A € R e ¢ > 0, toma-se o sistema
dindmico de Kronecker (R/Z,T'), onde 7T = T + @. Pelo teorema 2.7, todo
ponto desse sistema dinamico é recorrente. Em particular, o ponto 0 € R/Z
é recorrente. Logo, dado € > 0, existe n € N tal que, com a métrica d do
menor arco, d(n@,0) < e . E, como @ € R —Q, 0 € (R/Z) nao ¢ periddico,
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tem-se que 0 < d(na,0) < e. Isso quer dizer que existe m € Z tal que
0 < |[nao—m| < e. Se A > 0, pela propriedade arquimedianda da reta,
existe k = min {q € N : ¢ |[na — m| > A}. Portanto k [na — m| — A < &, pois,
caso contrario, (k—1) |na —m| > k |[nao — m|—e > X . Dependendo do sinal
de nao — m, segue que 0 < kna —km — A <eoul0 < —kna+km— X\ <e.
Caso A < 0, toma-se k = min{—¢ € N: g |naw — m| < A} e a demonstra-
¢ao fica analoga. O

E facil de perceber que o teorema de Kronecker acima implica, por exem-
plo, que as rotagoes irracionais sdo minimais (pois o teorema implica que a
orbita do elemento neutro de uma rotagao irracional é densa).

3.1.2 Teorema de Hardy e Littlewood

Usando o teorema 2.10, serd provado o teorema de Hardy e Littlewood e
um teorema que generaliza ele. O teorema 3.7 de Furstenberg poderia ser
provado antes do teorema de Hardy e Littlewood e, entao, tirar esse teorema
como coroléario. O teorema de Hardy e Littlewood serd demonstrado primeiro
porque ele possui uma demonstracao dindmica mais simples.

Teorema 3.4 (Hardy e Littlewood) Para todo o € R e todo & > 0, exis-
tem k € N e q € Z tais que |k*a — q| < .

Prova: Seja (T,T) o sistema dindmico de Kronecker, onde 77 = T+a. Faz-
se o produto cruzado de (T, T) via T pela aplicacao ¢ : T — T, ¢(z) = 2z+a.
Obtém-se, assim, o sistema dinamico (T?,S), onde

S(x,y) =T +a,2x+a+7).

Todo ponto no sistema dinamico de Kronecker (T, T’) ¢ recorrente (por ser
uma translagao), logo, pelo teorema 2.10, todo ponto em (T?, S) é recorrente.
Em particular, (0,0) é recorrente.

Provemos que S™(0,0) = (na,n*@), Vn € N. Com efeito, para n = 1,
a afirmacao é verdadeira. Supoe-se, por inducao, que é verdadeira para m.
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Isso implica que

S™H0,0) = S(S™(0,0))
= 5(
((m+1)
= ((m+1)a,
(m+1)

Ou seja, implica que a afirmacao é verdadeira para m + 1. E, portanto,
estd completa a prova por inducao de que S™(0,0) = (na, n’a).

Como (0,0) é recorrente, dado € > 0, segue que existe k € N tal que
dar((0,0), (ka, k*@)) < e. Isso, em particular, implica que

d(0, k*a) < e.
E isso quer dizer que existe ¢ € Z tal que |[k*a —q| < e. O

Antes de provar o teorema 3.7 de Furstenberg, serd definido um sistema
dindmico denominado “Sistema de Furstenberg”. Sera provado que esse sis-
tema ¢ recorrente (todos os pontos sao recorrentes).

Definigao 3.4 Para cada d € N, seja T¢ = (R/Z)? o toro d-dimensional.
Um sistema de Furstenberg é um sistema (T4 Fy), onde

Fd(mO;xh s 7xd) = ('ZCO)xl + Zoy...,2Tq + xd—l)'

E interessante observar que o sistema de Furstenberg (T?, F}), ilustrado
na figura 3.2, ¢ tal que, dado (zg,7;) € T?,

' (Zo,z1) = (%o, M2 + 21)

= (20732021)7

ou seja, identidade na primeira coordenada e rotagao na segunda coordenada.

Sera provado que todo sistema dindmico de Furstenberg é recorrente.
Note que isso é facil de verificar para o caso do sistema dinamico (T*, Fy), pois
Fy ¢ a aplicagao identidade em R/Z =~ S'. Além disso, pela observaciao do
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R/Z

Figura 3.2: Sistema de Furstenberg para d = 1.

pardgrafo anterior, é facil verficar que a afirmacao é verdadeira para (T?, F})
também.

A idéia da demonstracao do caso geral é fazer inducao sobre d. E, para
completar esse argumento de indugdo, serd usado o fato de que (T¢, Fy ;)
¢ um produto cruzado de (T4, Fy) via o grupo R/Z ~ S'. Apenas para
tornar a demonstracao da proposicao 3.6 mais concisa, serda provado isso no
lema abaixo.

Lema 3.5 Sejam (T, Fy) e (T4 F;_1) sistemas dindmicos de Fursten-

berg, onde d € N qualquer. Segue que (T4, Fy) é um produto cruzado de
(T4, Fy_y) via R/Z.

Prova: Para provar o lema, basta verificar que (T**!, F;) é o produto cru-
zado de (T¢, F,_ ;) via R/Z pela aplicacdo continua ¢ : T¢ — S!, onde
&(Z0,---,24-1) = Za—1- De fato,

Fd(Z_O,...,Z_d) - (Z_O7Z_O+Z_17"'7Zd—l+z_d>
= (Fu1(%0,---,Za-1), Za—1 + Za)

= (Fd—l(z_m cee Zd—1)>¢(z_0> SRR Zd—l) +Z_d)
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Proposicao 3.6 Todo sistema dindmico de Fursteberg (T4t Fy) é recor-
rente (ou seja, todos os pontos de um sistema de Furstenberg ao recorrentes).

Prova: Como foi observado anteriormente, o sistema dinamico (T, Fy) é
recorrente, quando d = 0 (pois, nesse caso, a aplicagao Fy é a aplicagao iden-
tidade em S'). Prova-se, entdo, por indugao, que a afirmagao é verdadeira
para qualquer d natural.

A hipétese de indugio é que o sistema de Furstenberg (T¢, F;_;) é recor-
rente. Como (T4, F) ¢ um produto cruzado de (T¢, F;_,) via R/Z, segue,
pelo teorema 2.10, que (T4, F};) é recorrente. E, portanto, isso completa a
prova por indugao da proposigao. U

Com esse resultado que diz que todo sistema de Furstenberg é recorrente,
estamos prontos para provar o mais forte resultado de Aproximacao Diofan-
tina que sera apresentado neste texto: o teorema 0.4 de Furstenberg. Seguem
o enunciado a demonstragao desse teorema.

Teorema 3.7 (Teorema de Furstenberg ) Seja p(z) um polinémio com
coeficientes reais tal que p(0) = 0. Entdo, Ve > 0, existem k € N e q € Z
tais que

Ip(k) —ql <e.

Prova: Com efeito, seja p(x) um polindmio de grau d satisfazendo a hipotese.
Define-se, entao, uma lista de d + 1 polindmios da seguinte forma:

pa(z) = p(z)

Pa-1(x) = pa(x+1) —pa(x)
pi(r) = po(r+1) —pa(a)
po(r) = pi(x+1)—pi(r).

E facil verificar que o polinémio py(x) dessa lista tem grau k, para qual-
quer k =0,...,d. Em particular, py é constante (grau 0).

O toro T é munido da métrica do méximo em relacdo & métrica do
menor arco em R/Z. Toma-se, entdo, o sistema dindmico de Furstenberg
(T4 Fy). Verifica-se que

Fy(po(0), .., pa(0)) = (po(n), ..., pa(n)),
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afinal, tem-se a seguinte relacao de recorréncia

Fi(po(n),...,pa(n)) = (po(n),po(n) +pi(n),...,ps—1(n) + pa(n))
= (po(n+1),p1(n+1),...,pa(n +1)).

Pelo resultado 3.6, tem-se que (po(0),...,pa(0)) é recorrente no sistema
dinamico (T4, Fy). E isso implica, em particular, que existe n € N tal que a
distancia entre (po(0),...,p4(0)) e F}(po(0),...,pa(0)) é menor que . Mas,
pela métrica do maximo, isso implica que

min,,ez [pa(n) — pa(0) —m| < e.

E, como p4(0) = 0 e pg(n) = p(n), isso implica que existe m € Z tal que
Ip(n) —m| <e. O

O teorema precedente é mais forte que o teorema de Hardy e Littlewood
(teorema 3.4), pois aquele se trata apenas de um caso particular: quando
o polindmio tem grau 2. Note, portanto, que o teorema de Hardy pode ser
colocado como corolario do teorema precedente. Existe um outro corolario
desse teorema. Na verdade, é corolario da demonstragao do teorema e estéa
enunciado abaixo.

Corolario 3.7.1 Sejam pi(x),p2(z), ..., pi(x) polinomios tais que p;(0) =0
para todo j € {1,...,k}. Entao, para todoe > 0 existem inteirosn,my, ..., my €
7. tais que

|p](n) - mjl <eVje {17 SR 7k} :

Prova: Com efeito, basta tomar o polindbmio

p(x) = (pr(2), . pr()).

Em vez de tomar o sistema dinamico (T?*!, ) (onde d ¢ o grau do polino-
mio), toma-se o sistema dinamico ((T*)?, F;) (onde d é o grau do polinémio
de maior grau entre p;(z),...,pr(x) ). Por uma argumentagao analoga, to-
dos os pontos desse sistema dindmico sao recorrentes. Disso e do fato de que
F7(p(0)) = p(n) segue a tese do corolario. d
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3.2 Sistemas Dinamicos Simbodlicos

Nesta secao, trataremos de dinamica simbolica. Serd com sistemas dinami-
cos simbolicos que demonstraremos o teorema de Van Der Waerden. Antes
de continuarmos, falaremos um pouco sobre o que é um sistema dindmico
simbolico e como é seu espago de fase.

Um alfabeto de k € N letras é um conjunto de cardinalidade k. Seja A
um alfabeto de k letras munido da topologia discreta. Por A ser evidente-
mente compacto, segue, pelo teorema de Tychonoff, que = A%, munido da,
topologia produto, é um compacto. Um ponto x € €2 pode ser escrito como
uma funcao

z: Z — A
k — Tg

Para cada “coordenada” j € Z, tem-se a aplicacdo projegao m; : AZ — A,
onde 7;(x) = x;. A topologia produto torna todas essas aplicagoes continuas,
além disso ela é menor topologia que satisfaz isso.

A topologia produto num espaco topologico £ = A% é caracterizada pelo
fato de que “ uma aplicagao f : M — () é continua se, e somente se, cada uma
de suas coordenadas (m; o f) : M — A; é continua”. De fato, €2 é metrizavel,
afinal é produto enumeravel de espacgos metrizaveis.

Lema 3.8 Seja Q = AZ. Se x # y em Q, define-se
B 1
14+ min{|k| : zx # yr}’

e d(z,xz) =0. Isso € uma métrica que induz a topologia produto em ).

d(z,y)

Prova: O fato de d ser uma métrica é de facil verificacao.
Seja p; a métrica zero-um em A;, ou seja, p;(x,x) =0 e p;(x,y) = 1, se
Com efeito, supoe-se f : M — €2 continua. Dada uma projecao m; : {2 —
A; qualquer, tem-se que, dado £ > 0, existe § > 0 tal que
dle.y) <8 = d(f).5) < 377

= min{|k|: f(2)r # f(y)} > [i]
= pi(f(x)i, fy)) =0<¢
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Ou seja, foi provado que (m; o f) é continua.
Reciprocamente, se (m; o f) é continua para todo i € Z, segue que, dado
e =1/n, > 0, existem g, 91,0_1,...,0,,,0_n, > 0 tais que

d(z,y) <do = mo(f(x)) =mo(f(y))
d(r,y) <& = m(f(z))=m(f(y))
d(z,y) <o = 7m1(f(x)) =7m1(f(y))

d(r,y) < 0n, == mu,(f(7)) =m0, (f(y))
d(@,y) <0_p, = m_n,(f(2)) =70, (f(y))

Logo d(x,y) < min {d_,,, Ongs 0—ng+1s Ong—1, - - - , 0o} implica

1
1+ |n,|

d(f(x), f(y)) < <1/n,=¢.
Isso completa a prova da reciproca. Il
Note que, com a métrica definida no lema 3.8, d(z,y) < 1, Vz,y € Q.

Definicao 3.5 Seja T : Q — Q, Tx =y, onde yp = v11. A aplicagao T €
chamada de funcao-deslocamento no alfabeto A, ou “shift” no alfabeto A. T é
um homeomorfismo. Chamamos o sistema dindmico (2,T) de deslocamento
(de dois lados) em k simbolos (e ele € um sistema dindmico simbdlico).

Prova: Provemos que T' é um homeomorfismo.

Dado ¢ € Z, tem-se que m;0T = ;.1 €, evidentemente, continua. Portanto
ficou provado que T é continua. Analogamente, dado 7 € 7Z, temos que
m; 0T~ = m;_; é continua. Portanto 7" ¢ homeomorfismo.

g

3.2.1 Teorema de Van der Waerden

Para provar o teorema de Van der Waerden 0.5, o primeiro passo é fazer
uma “traducao” desses problemas de coloracao para o contexto de sistemas
dindmicos. O lema 3.9 é responséavel por essa traducao.
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Aqui, sera usado freqiiéntemente as terminologias estabelecidas na pégina
6. O sistema dindmico que sera tratado aqui é o sistema dindmico simbolico
estabelecido no inicio desta secao. O principal resultado ustilizado nesta
subsecao é aquele provado na secao de Recorréncia Miltipla do capitulo

Recorréncias®.

Lema 3.9 (Furstenberg) Dado um sistema dinamico (X,T) qualquer. Para
todo v € X, todo € >0 e todo k € N, existem m € Z en € N tais que

{me, T "y . ,Tm+”kx}
tem diamétro menor que €.

Prova: Toma-se um sistema dinamico (X, 7") qualquer. Dados k € N,z € X
ee >0, toma-se Y =7Zx. PorY ser o fecho de um T-invariante, segue que
Y é invariante.

Define-se T; := T*. Logo {T1,..., Ty} ¢ uma familia de homeomorfismos
comutativos agindo em Y. Logo, pelo teorema 2.13, segue que existem y € Y
e n; — oo tais que

Ty —y,.... T,y —y.

Logo existe n € N tal que Ty, ..., T}y € B(y;¢/8).
Pela continuidade uniforme de 77,75, ..., T}, segue que existe § > 0 tal
que
d(a,b) < 6 = min {d(17'a, T7'), ..., d(T}'a, T}'b)} < £/8.

Por y € Y = Z-x, segue que existe m € Z tal que d(T™z,y) <
min {d,e/8}. Logo

d(T"x,y), d(TVy, 7 (T™x)), ..., d(T}}y, T (T™x)) < €/8.
Mas isso quer dizer que
d(y, T™z), d(T™y, T™ "), d(T*"y, T™*"x), ..., d(T*"y, T "2) < /8.
Tem-se que, para qualquer ¢ € {0,1,...,k}, vale

d(y, T ™z) < d(T™ 2, T"y) + d(T"y,y) < /8 +¢/8 =¢/4.

3Ver secdo 2.4
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Portanto T™z, ..., T™ "z € Bly;e/4]. Ou seja, o diametro do conjunto
{T™z,...,T™ ¥z} ¢ menor que e.
]

Segue, abaixo, o enunciado e a demonstracao do teorema de Van de Wa-
erden 0.5.

Teorema 3.10 (Van der Waerden) SeZ = C;UCyU---UC, é uma par-
ticao finita, entao, para algum j € {1,2,...,r}, C; contém uma progressao
aritmética finita de tamanho arbitrario. Ou seja, toda coloracao finita de Z
contém uma P.A. de tamanho arbitrdrio finito monocromdtica.

Prova: Dada uma coloracao
Z=CiU---uC,.

de r cores, define-se o sistema dinamico (2, T) de deslocamento?, onde Q =
A% = {1,...,r}”. Mune-se Q da métrica d definida em 3.5. Note que essa
métrica tem a propriedade de

d(z,y) <1 <=z = Y.

Toma-se o ponto = € () tal que z; = i, se t € C;. Pelo lema 3.9, dado um
tamanho k € N, existem m € Z en € N tais que {me, T, ... ,T"””ka}
tem diametro menor que 1. Pela métrica, segue que

(me)o S (Tm+nkl')0.
Ou seja, T, =+ -+ = Typink- Isso quer dizer que
{m,....m+nk} C Cj,
onde j :=z,, € {1,...,r}. O

Observacao: Um fato interessante é que o lema 3.9 é uma versao dinamica
do teorema de Van der Waerden: ele é equivalente ao teorema de Van der
Waerden. Para provar o lema 3.9 usando o teorema de Van der Waerden,

4Definido em 3.5.
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basta tomar uma particao finita de X = U F; por conjuntos fechados de
=1
diametro menor que £°. Segue que Z = |J;_, C;, onde
CZ:{tEZtl’GE},

¢ uma particao de Z. Logo, pelo teorema de Van der Waerden, para todo k €
N, existem m € Z e n € N tais que {m, m +n,..., m + nk} esté inteiramente
contido em algum C;. Ou seja,

{T"x,..., T™"2} C F},

donde segue a tese do lema 3.9.

5Essa particdo existe por X ser compacto
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Apéndice A
Transitividade Topologica

Nessa segao, seré discutido uma nocgao ligada as nogoes de conjuntos minimais
e de recorréncia: a de transitividade topologica.

Definicao A.1 (Transitividade topolégica) Seja (X,Z) um sistema di-
namico. (X,7Z) é denominado topologicamente transitivo se existe algum
x € X tal que

Z-x=X.

Proposicao A.1 Seja (X,7Z) um sistema dindmico. As sequintes afirmagoes
sao equivalentes:

1. (X,Z) € topologicamente transitivo;
2. Se U C X € um aberto nao-vazio invariante, entao U € denso em X;

3. Se U,V C X sao abertos nao-vazios, entao existe n € Z tal que

n-UNV #0.

Prova: 1 = 2: Assumindo 1, toma-se z € X tal que Z - z = X. Logo, dado
um aberto U C X, existe n € Z tal que n-x € U. Como U é invariante,
segue que

Z-x=7-(n-x)CU.

Portanto U D Z -z = X. Isso completa a prova de que U = X e, portanto,
completa a prova de que 1 implica 2.

o1
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2 = 3: Sejam U, V abertos nao-vazios de X. Segue que Z-U é um aberto
invariante nao-vazio de X. Logo, pela hipotese, Z - U ¢é denso. Portanto

Z-UNV #0.

Ou seja, existe n € Z tal que n-U NV #£ (.

3 = 1: Um espago métrico compacto satisfaz o segundo axioma da enu-
merabilidade, ou seja, possui uma base enumeravel. Toma-se uma base enu-
meravel {Vj}jeN' Ent&o, para cada j € N, Z - V; é aberto e, entdo, (pela
hipétese) tem intersegdo nao-vazia com todo aberto de X. Ou seja, Z -V é
denso em X. Portanto

I:ﬁZ-Vj
j=1

é uma intersecao enumeravel de abertos densos. Pelo teorema de Baire, isso
¢ nao vazio. Toma-se x € I. Tem-se que, para todo j € N, existe n € Z tal
que n -z € V;. Portanto a orbita de x tem intersecao nao vazia com todo
aberto bésico, ou seja, é densa em X. Isso completa a prova de que (X,Z) é
topologicamente transitivo. U

A proposicao a segur mostra uma condigao suficiente para que um sistema
dindmico transitivo seja minimal.

Proposicao A.2 Seja (X,T) um sistema dindmico transitivo (onde X pos-
sui uma métrica d). Se existe uma métrica equivalente a d tal que T é uma
isometria, entao (X,T) € minimal.

Prova: Com efeito, sejam (X,7T) um sistema dinamico transitivo (com a
métrica d ) e ¢ uma métrica equivalente a d tal que T é uma isometria.
Toma-se x € X tal que Z - x = X. Dado y € X, provemos que sua Orbita
é densa em X. Dados z € X e € > 0, segue que existem n,m € Z tais que
dm-x,y) < §ed(n-r z) < 5. Portanto
d(z,(n—m)-y) < d(z,n-x)+dn-z,(n—m)-y)
= d(z,n-z)+dim-x,y)
< €

Isso completa a prova da proposicgao. O
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